Powder Metallurgy and Metal Ceramics

, Volume 56, Issue 5–6, pp 264–272 | Cite as

Effect of Graphite Content on Mechanical Properties and Friction Coefficient of Reinforced Aluminum Composites

  • P. Sharma
  • S. Sharma
  • R. Kumar Garg
  • K. Paliwal
  • D. Khanduja
  • V. Dabra

Aluminum matrix composites (AMCs) reinforced with different content (wt.%) of graphite (Gr) reinforcing particles are synthesized by stir casting technique. The fraction of reinforcing particles ranges from 5 to 15 wt.% at 5 wt.% intervals. Microstructures, density, porosity, hardness, tensile strength, and friction coefficient of fabricated particulate reinforced AMCs are studied. The scanning electron microscopy reveals a non-uniform distribution of reinforcing particles in the aluminum metal matrix. A non-uniform distribution of reinforcing particles is also confirmed by the elemental maps of C (Gr) present in particulate reinforced AMCs. The density of particulate reinforced AMCs decreases from 2.69 to 2.55 g/cm3, while the porosity increases from 0.37 to 2.45% with an increase in the fraction of reinforcing particles in the aluminum matrix from 0 to 15 wt.%, respectively. Both the hardness and ultimate tensile strength are reduced from 49.5 to 42 HV and 161.5 to 150 MPa, respectively, with a reduction in elongation from 8.6 to 6.5% with an increase in the volume fraction of reinforcing particles in the aluminum matrix from 0 to 15 wt.%, respectively. The average coefficient of friction reduced from 0.45 to 0.22 with an increase in the volume fraction of reinforcing particles in the aluminum matrix from 0 to 15 wt.%, respectively.


aluminum matrix composites stir casting scanning electron microscope graphite tensile strength 


  1. 1.
    P. Bajaj, Mechanical Behaviour of Aluminum Based Metal Matrix Composites Reinforced with SiC and Alumina, ME Thesis, Thapar University Patiala (2010).Google Scholar
  2. 2.
    J. Hemanth, “Quartz (SiO2p) reinforced chilled metal matrix composite (CMMC) for automobile applications,” Mater. Design, 30, No. 2, 323–329 (2009).CrossRefGoogle Scholar
  3. 3.
    Y. C. Feng, L. Geng, P. Q. Zheng, et al., “Fabrication and characteristic of Al-based hybrid composite reinforced with tungsten oxide particle and aluminum borate whisker by squeeze casting,” Mater. Design, 29, No. 10, 2023–2026 (2008).Google Scholar
  4. 4.
    C. S. Ramesh, R. Keshavamurthy, B. H. Channabasappa, and A. Abrar, “Microstructure and mechanical properties of Ni–P coated Si3N4 reinforced Al6061 composites,” Mater. Sci. Eng.: A, 502, Nos. 1–2, 99–106 (2009).Google Scholar
  5. 5.
    H. R. Lashgari, A. R. Sufizadeh, and M. Emamy, “The effect of strontium on the microstructure and wear properties of A356–10% B4C cast composites,” Mater. Design, 31, No. 4, 2187–2195 (2010).CrossRefGoogle Scholar
  6. 6.
    P. Sharma, D. Khanduja, and S. Sharma, “Tribological and mechanical behavior of particulate aluminum matrix composites,” J. Rein. Plas. Comp., 33, No. 23, 2192–2202 (2014).CrossRefGoogle Scholar
  7. 7.
    T. W. Cylne, “Metal Matrix Composites,” in: Comprehensive Composite Materials II, Vol. 3, Elsevier, PA, USA (2000) p.6000.Google Scholar
  8. 8.
    A. Jokinen and V. Rauta, Manufacturing and Properties of Aluminum Alloy Matrix Composites, Final Report, Technical Research Centre of Finland, Metallurgy Laboratory, Espoo (1992), p. 26.Google Scholar
  9. 9.
    Encyclopedia of Materials, Science and Technology, Elsevier (2001), pp. 1–20.Google Scholar
  10. 10.
    K. R. Ravi, V. M. Sreekumar, R. M. Pillai, et al., “Optimization of mixing parameters through a water model for metal matrix composites synthesis,” Mater. Design, 28, No. 3, 871–881 (2007).CrossRefGoogle Scholar
  11. 11.
    K. M. Shorowordi, T. Laoui, A. S. M. A. Haseeb, et al., “Microstructure and interface characteristics of B4C, SiC, and Al2O3 reinforced Al matrix composites: a comparative study,” J. Mater. Proc. Technol., 142, No. 3, 738–743 (2003).CrossRefGoogle Scholar
  12. 12.
    Kerti and F. Toptan, “Microstructural variations in cast B4C-reinforced aluminum matrix composites (AMCs),” Mater. Letters, 62, Nos. 8–9, 1215–1218 (2008).Google Scholar
  13. 13.
    M. K. Surappa, “Microstructure evolution during solidification of DRMMC (discontinuously reinforced metal matrix composites): State of Art,” J. Mater. Proc. Tech., 63, 325–333 (2008).CrossRefGoogle Scholar
  14. 14.
    A. Mortensen, Mechanical and Physical Behaviour of Metals and Ceramic Compounds, Riso National Laboratory, Roskilde, Denmark (1988), p. 141.Google Scholar
  15. 15.
    A. C. Pai, K. G. Satyanarayana, and P. S. Robi, “Effect of chemical and ultrasound treatment on the tensile properties of carbon fibers,” Mater. Sci. Lett., 11, No. 11, 779–781 (1992).Google Scholar
  16. 16.
    M. Kok, “Production and mechanical properties of Al2O3 particle-reinforced 2024 aluminum alloy composites,” J. Mater. Proc. Technol., 161, No. 3, 381–387 (2005).CrossRefGoogle Scholar
  17. 17.
    P. Sharma, S. Sharma, and D. Khanduja, “Parametric study of dry sliding wear behavior of hybrid metal matrix composite produced by a novel process,” Metall. Mater. Trans. A, 46, No. 7, 3260–3270 (2015).CrossRefGoogle Scholar
  18. 18.
    P. Sharma, S. Sharma, and D. Khanduja, “Production and some properties of Si3N4 reinforced aluminum alloy composites,” J. Asian Ceram. Soc., 3, No. 3, 352–359 (2015).Google Scholar
  19. 19.
    G. B. V. Kumar, C. S. P. Rao, and N. Selvaraj, “Studies on mechanical and dry sliding wear of Al6061–SiC composites,” Comp. Part B: Eng., 43, No. 3, 1185–1191 (2012).CrossRefGoogle Scholar
  20. 20.
    Y. Sahin, “Prepration and some properties of SiC particle reinforced aluminum alloy composites,” Mater. Design, 24, No. 8, 671–679 (2003).CrossRefGoogle Scholar
  21. 21.
    Y. Sahin and M. Acilar, “Production and properties of SiCp reinforced aluminum alloy composites,” Comp. Part A: Appl. Sci. Manufac., 34, No. 8, 709–718 (2003).CrossRefGoogle Scholar
  22. 22.
    V. S. Aigbodion and S. B. Hassan, “Effect of Silicon carbide reinforcement on microstructure and properties of cast Al–Si–Fe/SiC particulate composites,” Mater. Sci. Eng. A, 447, Nos. 1–2, 355–360 (2007).Google Scholar
  23. 23.
    A. M. Hassan, G. M. Tashtoush, and A. K. J. Ahmed, “Effect of graphite and/or silicon carbide particles addition on the hardness and surface roughness of Al–4 wt.% Mg alloy,” J. Comp. Mater., 41, No. 4, 453–465 (2007).CrossRefGoogle Scholar
  24. 24.
    F. Akhlaghi and Z. A. Bidaki, “Influence of graphite content on dry sliding and oil impregnated sliding wear behaviour of Al2024–Gr composite produced by in situ powder metallurgy method,” Wear, 266, Nos. 1–2, 37–45 (2009).Google Scholar
  25. 25.
    A. Baradeswaran and A. E. Perumal, “Study on mechanical and wear properties of Al 7075/Al2O3/graphite hybrid composites,” Comp. Part B: Eng., 56, 464–471 (2014).CrossRefGoogle Scholar
  26. 26.
    P. Sharma, S. Sharma, and D. Khanduja, “A study on microstructure of aluminum matrix composites,” J. Asian Ceram. Soc., 3, No. 3, 240–244 (2015).Google Scholar
  27. 27.
    S. N. Prashant, N. Madeva, and V. Auradi, “Prepration and evaluation of mechanical and wear properties of 6061 Al reinforced with graphite particulate metal matrix composite,” Int. J. Metall. Mater. Sci. Eng., 2, No. 3, 85–95 (2012).Google Scholar
  28. 28.
    P. Sharma, D. Khanduja, and S. Sharma, “Dry sliding wear investigation of Al6082/Gr metal matrix composites by response surface methodology,” J. Mater. Res. Technol., 5, No. 1, 29–36 (2016).CrossRefGoogle Scholar
  29. 29.
    S. Suresha and B. K. Sridhara, “Effect of silicon carbide particulates on wear resistance of graphitic aluminum matrix composites,” Mater. Design, 31, No. 9, 4470–4477 (2010).CrossRefGoogle Scholar
  30. 30.
    S. Sharma, K. Paliwal, R. K. Garg, et al., “A study on wear behavior of Al6101/graphite composites,” J. Asian Ceram. Soc., 5, No. 1, 42–48 (2017).CrossRefGoogle Scholar
  31. 31.
    J. Hashim, L. Looney, and M. S. J. Hashmi, “Metal matrix composites: production by the stir casting method,” J. Mater. Proc. Technol., 92–93, 1–7 (1999).Google Scholar
  32. 32.
    J. Hashim, L. Looney, M. S. J. Hashmi, “Properties of alumina particulate reinforced aluminum alloy produced by pressure die casting,” Mater. Design, 27, No. 8, 676–683 (2006).CrossRefGoogle Scholar
  33. 33.
    S. A. Sajjadi, H. R. Ezatpour, and H. Beygi, “Microstructure and mechanical properties of Al-Al2O3 micro and nano composites fabricated by stir casting,” Mater. Sci. Eng.: A, 528, Nos. 29–30, 8765–8771 (2011).Google Scholar
  34. 34.
    ASTM E8 / E8M-16a, Standard Test Methods for Tension Testing of Metallic Materials, ASTM International, West Conshohocken, PA, 2016.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • P. Sharma
    • 1
  • S. Sharma
    • 2
  • R. Kumar Garg
    • 3
  • K. Paliwal
    • 1
  • D. Khanduja
    • 4
  • V. Dabra
    • 1
  1. 1.Panipat Institute of Engineering and TechnologyPanipatIndia
  2. 2.Gautam Buddha UniversityGreater NoidaIndia
  3. 3.Deenbandhu Chhotu Ram University of Science and TechnologySonipatIndia
  4. 4.National Institute of TechnologyKurukshetraIndia

Personalised recommendations