Skip to main content
Log in

The Effect of Processing Techniques and Operating Parameters on the Erosion Wear Behavior of Particle-Reinforced Metal Matrix and Surface Composites: A Review

  • Published:
Journal of Bio- and Tribo-Corrosion Aims and scope Submit manuscript

Abstract

Metal matrix composites (MMCs) and surface composites are of particular interest in erosion wear-related applications because of their enhanced mechanical properties, ease of processing, and low cost. MMCs and surface composites can resist solid particle erosion by the two-phase structure having a ductile matrix and hard reinforcement. Developing various processing techniques has led to defect-free composite fabrication with tailor-made properties. Moreover, erosion wear studies are inevitable in terms of ensuring the suitability of composites in harsh environments prone to excessive erosion wear. This paper gives a thorough and comprehensive summary of various processing methods for the MMCs and surface composites. In addition, a detailed review of the erosion mechanism of MMCs and surface composites is made. In the end, the various factors influencing the erosion behavior of MMCs, such as the processing technique, matrix and reinforcement material properties, erodent properties, slurry properties, and flow characteristics, have also been reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

Data Availability

The data will be provided upon request.

Abbreviations

CNC:

Computer numerical control

DMD:

Disintegrated melt deposition

DPH:

Diamond pyramid hardness

EFR:

Erodent feed rate (g/min or g/s)

FSP:

Friction stir processing

HIP:

Hot isostatic pressing

HVOF:

High-velocity oxy-fuel spraying

HVN:

Vickers hardness number

IA:

Impact angle (Degrees)

IV:

Impact velocity (m/s)

MMCs:

Metal matrix composites

RC:

Reinforcement content (wt%)

SC:

Solid concentration (wt%)

SEM:

Scanning electron microscope

SOD:

Stand-off distance (mm)

References

  1. Hooker JA, Doorbar PJ (2000) Metal matrix composites for aeroengines. Mater Sci Technol 16:725–731. https://doi.org/10.1179/026708300101508414

    Article  CAS  Google Scholar 

  2. Panneerselvam T, Kandavel TK, Arun KS, Dineshkumar V (2018) Tribological study on hybrid reinforced aluminium-based metal matrix composites. Int J Surf Sci Eng 12:449–466. https://doi.org/10.1504/IJSURFSE.2018.096763

    Article  CAS  Google Scholar 

  3. Patel SK, Kuriachen B, Nateriya R (2020) Slurry erosive wear and microhardness characteristics with coarse silica sand of dual reinforced particles ADC12 alloy composites. J Mar Eng Technol 19:240–248. https://doi.org/10.1080/20464177.2019.1665818

    Article  Google Scholar 

  4. Yadav M, Kumaraswamidhas LA, Singh SK (2022) Investigation of solid particle erosion behavior of Al-Al2O3 and Al-ZrO2 metal matrix composites fabricated through powder metallurgy technique. Tribol Int 172:107636. https://doi.org/10.1016/j.triboint.2022.107636

    Article  CAS  Google Scholar 

  5. Aribo S, Fakorede A, Ige O, Olubambi P (2017) Erosion-corrosion behaviour of aluminum alloy 6063 hybrid composite. Wear 376–377:608–614. https://doi.org/10.1016/j.wear.2017.01.034

    Article  CAS  Google Scholar 

  6. Tu JP, Pan J, Matsumura M, Fukunaga H (1998) The solid particle erosion behavior of Al18B4O33 whisker-reinforced AC4C al alloy matrix composites. Wear 223:22–30. https://doi.org/10.1016/S0043-1648(98)00295-6

    Article  CAS  Google Scholar 

  7. Caron S, Thibault P, Turenne S et al (1989) Erosion resistance of aluminum matrix composites. In: Processing of ceramic and metal matrix composites, pp 424–432. https://doi.org/10.1016/B978-0-08-037298-3.50044-X

  8. Michaud V, Mortensen A (2001) Infiltration processing of fibre reinforced composites: governing phenomena. Composites Part A 32:981–996. https://doi.org/10.1016/S1359-835X(01)00015-X

    Article  Google Scholar 

  9. Borji S, Ahangarkani M, Zangeneh-Madar K, Valefi Z (2017) The effect of sintering activator on the erosion behavior of infiltrated W-10wt%Cu composite. Int J Refract Met Hard Mater 66:150–157. https://doi.org/10.1016/j.ijrmhm.2017.03.007

    Article  CAS  Google Scholar 

  10. Ahangarkani M, Zangeneh-Madar K, Borji S, Valefi Z (2017) Microstructural study on ultra-high temperature erosion mechanism of infiltrated W-10 wt%Cu composite. Int J Refract Met Hard Mater 67:115–124. https://doi.org/10.1016/j.ijrmhm.2017.05.009

    Article  CAS  Google Scholar 

  11. Kumar S, Manani S, Nikunj P, Pradhan AK (2020) Synthesis and air jet erosion wear behavior of aluminum—Al3Ti In-Situ composite. Mater Today Proc 28:2572–2578. https://doi.org/10.1016/j.matpr.2020.05.701

    Article  CAS  Google Scholar 

  12. Kan WH, Proust G, Bhatia V et al (2019) Slurry erosion, sliding wear and corrosion behavior of martensitic stainless steel composites reinforced in-situ with NbC particles. Wear 420–421:149–162. https://doi.org/10.1016/j.wear.2018.09.013

    Article  CAS  Google Scholar 

  13. Gui M, Wang D, Wu J, Li C (2001) Erosion of in-situ TiC particle reinforced Al-5Cu composite. Mater Res Bull 36:1573–1585. https://doi.org/10.1016/S0025-5408(01)00485-8

    Article  CAS  Google Scholar 

  14. Grewal HS, Agrawal A, Singh H (2013) Slurry erosion performance of Ni-Al2O3 based composite coatings. Tribol Int 66:296–306. https://doi.org/10.1016/j.triboint.2013.06.010

    Article  CAS  Google Scholar 

  15. Paul CP, Mishra SK, Tiwari P, Kukreja LM (2013) Solid-particle erosion behaviour of WC/Ni composite clad layers with different contents of WC particles. Opt Laser Technol 50:155–162. https://doi.org/10.1016/j.optlastec.2013.03.002

    Article  CAS  Google Scholar 

  16. Venkatesh L, Venkataraman B, Tak M et al (2019) Room temperature and 600 °C erosion behaviour of various chromium carbide composite coatings. Wear 422–423:44–53. https://doi.org/10.1016/j.wear.2019.01.025

    Article  CAS  Google Scholar 

  17. Zhou R, Jiang Y, Lu D (2003) The effect of volume fraction of WC particles on erosion resistance of WC reinforced iron matrix surface composites. Wear 255:134–138. https://doi.org/10.1016/S0043-1648(03)00290-4

    Article  CAS  Google Scholar 

  18. MacMillin BE, Roll CD, Funkenbusch P (2010) Erosion and surface structure development of metal-diamond particulate composites. Wear 269:875–883. https://doi.org/10.1016/j.wear.2010.08.018

    Article  CAS  Google Scholar 

  19. Annamalai S, Anand Ronald B (2023) A comprehensive review on synergistic and individual effects of erosion–corrosion in ferrous piping materials. Corros Rev 41:399–416. https://doi.org/10.1515/corrrev-2022-0063

    Article  CAS  Google Scholar 

  20. Roy M, Tirupataiah Y, Sundararajan G (1993) Effect of particle shape on the erosion of Cu and its alloys. Mater Sci Eng A 165:51–63. https://doi.org/10.1016/0921-5093(93)90626-P

    Article  Google Scholar 

  21. Liu X, Kang JJ, Yue W et al (2019) Performance evaluation of HVOF sprayed WC-10Co4Cr coatings under slurry erosion. Surf Eng 35:816–825. https://doi.org/10.1080/02670844.2019.1568661

    Article  CAS  Google Scholar 

  22. Siva Surya M, Prasanthi G (2022) Physical and mechanical characterisation of Al7075/SiC functionally graded materials fabricated by powder metallurgy route. Adv Mater Process Technol 8:1007–1022. https://doi.org/10.1080/2374068X.2020.1835022

    Article  Google Scholar 

  23. Chand S, Chandrasekhar P (2020) Influence of B4C/BN on solid particle erosion of Al6061 metal matrix hybrid composites fabricated through powder metallurgy technique. Ceram Int 46:17621–17630. https://doi.org/10.1016/j.ceramint.2020.04.064

    Article  CAS  Google Scholar 

  24. Christy JV, Arunachalam R, Mourad AHI et al (2020) Processing, properties, and microstructure of recycled aluminum alloy composites produced through an optimized stir and squeeze casting processes. J Manuf Process 59:287–301. https://doi.org/10.1016/j.jmapro.2020.09.067

    Article  Google Scholar 

  25. Alizadeh A, Khayami A, Karamouz M, Hajizamani M (2022) Mechanical properties and wear behavior of Al5083 matrix composites reinforced with high amounts of SiC particles fabricated by combined stir casting and squeeze casting; A comparative study. Ceram Int 48:179–189. https://doi.org/10.1016/j.ceramint.2021.09.093

    Article  CAS  Google Scholar 

  26. Peters JS, Cook BA, Harringa JL, Russell AM (2009) Erosion resistance of TiB2-ZrB2 composites. Wear 267:136–143. https://doi.org/10.1016/j.wear.2009.01.037

    Article  CAS  Google Scholar 

  27. Dorkar NV, Kim YW, Kumar BVM (2020) Influence of temperature, impact angle and h-BN content on the erosive wear behavior of hot-pressed SiC-BN composites. Wear 458:203447. https://doi.org/10.1016/j.wear.2020.203447

    Article  CAS  Google Scholar 

  28. Levin BF, Dupont JN, Marder AR (2000) The effect of second phase volume fraction on the erosion resistance of metal-matrix composites. Wear 238:160–167. https://doi.org/10.1016/S0043-1648(99)00363-4

    Article  CAS  Google Scholar 

  29. Morrisor CT, Routbort JL, Warrenc R (1993) Erosion of an aligned alumina-stainless steel composite. Wear 160:34. https://doi.org/10.1016/0043-1648(93)90439-S

    Article  Google Scholar 

  30. Das S, Mondal DP, Dasgupta R, Prasad BK (1999) Mechanisms of material removal during erosion-corrosion of an Al-SiC particle composite. Wear 236:295–302. https://doi.org/10.1016/S0043-1648(99)00289-6

    Article  CAS  Google Scholar 

  31. Dey A, Khan MM (2022) Investigation of erosion wear characteristics of LM13/SiC composites implementing box-behnken design methodology. J Bio Tribocorros 8:90. https://doi.org/10.1007/s40735-022-00686-w

    Article  Google Scholar 

  32. Lakshmanan M, Selwin Rajadurai J, Chakkravarthy V, Rajakarunakaran S (2021) Tribological investigations on h-BN/NiTi inoculated Al7075 composite developed via ultrasonic aided squeeze casting. Mater Lett 285:129113. https://doi.org/10.1016/j.matlet.2020.129113

    Article  CAS  Google Scholar 

  33. Chang Z, Wu Y, Iizuka T et al (2021) High-strength and high-modulus Al18B4O33W/GWZ1031K magnesium matrix composite prepared by squeeze casting. Mater Sci Eng A 817:141393. https://doi.org/10.1016/j.msea.2021.141393

    Article  CAS  Google Scholar 

  34. Sivaprasad K, Babu SPK, Natarajan S et al (2008) Study on abrasive and erosive wear behaviour of Al 6063/TiB2 in situ composites. Mater Sci Eng A 498:495–500. https://doi.org/10.1016/j.msea.2008.09.003

    Article  CAS  Google Scholar 

  35. Kumar SD, Vundavilli PR, Mandal A et al (2017) Erosion response of thixoformed A356–5TiB2 in situ composite using Taguchi’s experimental design. Tribol Trans 60:39–46. https://doi.org/10.1080/10402004.2016.1145775

    Article  CAS  Google Scholar 

  36. Sliem MH, Fayyaz O, Shakoor RA et al (2023) The influence of different preparation methods on the erosion behavior of NiP-ZrO2 nanocomposite coating. Tribol Int 178:108014. https://doi.org/10.1016/j.triboint.2022.108014

    Article  CAS  Google Scholar 

  37. Krella A, Tekumalla S, Gupta M (2021) Influence of micro Ti particles on resistance to cavitation erosion of Mg-xTi composites. Mech Mater 154:103705. https://doi.org/10.1016/j.mechmat.2020.103705

    Article  Google Scholar 

  38. Adarsha H, Keshavamurthy R, Ramesh S, Noronha NP (2016) Effect of carbon fiber rod reinforcement on slurry erosive behavior of Al6061 composites. Procedia Technol 25:916–923. https://doi.org/10.1016/j.protcy.2016.08.179

    Article  Google Scholar 

  39. Fang Q, Sidky P, Hocking MG (1997) Erosive wear behaviour of aluminium based composites. Mater Des 18:389–393. https://doi.org/10.1016/S0261-3069(97)00081-2

    Article  CAS  Google Scholar 

  40. Kumar Patel S, Nateriya R, Singh VP (2018) Effect of secondary phase particles on erosive wear characteristic of dual reinforced particle Al-alloy composites. Mater Today Proc 5:17561–17571. https://doi.org/10.1016/j.matpr.2018.06.073

    Article  CAS  Google Scholar 

  41. Mishra SK, Biswas S, Satapathy A (2014) A study on processing, characterization and erosion wear behavior of silicon carbide particle filled ZA-27 metal matrix composites. Mater Des 55:958–965. https://doi.org/10.1016/j.matdes.2013.10.069

    Article  CAS  Google Scholar 

  42. Nateriya R, Patel SK, Dixit G (2017) Microstructural and erosive wear behavior on coarse silica sand of Dual Reinforced Particle (DRP) LM-13 alloy composites. Mater Today Proc 4:3431–3440. https://doi.org/10.1016/j.matpr.2017.02.232

    Article  Google Scholar 

  43. Ramesh CS, Keshavamurthy R (2011) Slurry erosive wear behavior of Ni-P coated Si3N4 reinforced Al6061 composites. Mater Des 32:1833–1843. https://doi.org/10.1016/j.matdes.2010.12.024

    Article  CAS  Google Scholar 

  44. Mishra RS, Ma ZY, Charit I (2003) Friction stir processing: a novel technique for fabrication of surface composite. Mater Sci Eng A 341:307–310. https://doi.org/10.1016/S0921-5093(02)00199-5

    Article  Google Scholar 

  45. Qiao K, Zhang T, Wang K et al (2022) Effect of multi-pass friction stir processing on the microstructure evolution and corrosion behavior of ZrO2/AZ31 magnesium matrix composite. J Mater Res Technol 18:1166–1179. https://doi.org/10.1016/j.jmrt.2022.02.127

    Article  CAS  Google Scholar 

  46. Orłowska M, Pixner F, Hütter A et al (2022) Manufacturing of coarse and ultrafine-grained aluminum matrix composites reinforced with Al2O3 nanoparticles via friction stir processing. J Manuf Process 80:359–373. https://doi.org/10.1016/j.jmapro.2022.06.011

    Article  Google Scholar 

  47. Ahmed MMZ, El-Sayed Seleman MM, Eid RG, Zawrah MF (2022) Production of AA1050/silica fume composite by bobbin tool-friction stir processing: microstructure, composition and mechanical properties. CIRP J Manuf Sci Technol 38:801–812. https://doi.org/10.1016/j.cirpj.2022.07.002

    Article  Google Scholar 

  48. Zou Y, Qiu Z, Huang C et al (2022) Microstructure and tribological properties of Al2O3 reinforced FeCoNiCrMn high entropy alloy composite coatings by cold spray. Surf Coat Technol 434:128205. https://doi.org/10.1016/j.surfcoat.2022.128205

    Article  CAS  Google Scholar 

  49. Assadi H, Schmidt T, Richter H et al (2011) On parameter selection in cold spraying. J Therm Spray Technol 20:1161–1176. https://doi.org/10.1007/s11666-011-9662-9

    Article  CAS  Google Scholar 

  50. Sun W, Tan AWY, Bhowmik A et al (2019) Evaluation of cold sprayed graphene nanoplates–Inconel 718 composite coatings. Surf Coat Technol 378:125065. https://doi.org/10.1016/j.surfcoat.2019.125065

    Article  CAS  Google Scholar 

  51. Xie X, Tan Z, Chen C et al (2021) Synthesis of carbon nanotube reinforced Al matrix composite coatings via cold spray deposition. Surf Coat Technol 405:126676. https://doi.org/10.1016/j.surfcoat.2020.126676

    Article  CAS  Google Scholar 

  52. Koricherla MV, Torgerson TB, Alidokht SA et al (2021) High temperature sliding wear behavior and mechanisms of cold-sprayed Ti and Ti–TiC composite coatings. Wear 476:203746. https://doi.org/10.1016/j.wear.2021.203746

    Article  CAS  Google Scholar 

  53. Kuroda S, Kawakita J, Watanabe M, Katanoda H (2008) Warm spraying-a novel coating process based on high-velocity impact of solid particles Warm spraying-a novel coating process based on high-velocity impact of solid particles. Sci Technol Adv Mater 9:17. https://doi.org/10.1088/1468-6996/9/3/033002

    Article  CAS  Google Scholar 

  54. Ahmad Alidokht S, Vo P, Yue S, Chromik RR (2017) Erosive wear behavior of Cold-Sprayed Ni-WC composite coating. Wear 376–377:566–577. https://doi.org/10.1016/j.wear.2017.01.052

    Article  CAS  Google Scholar 

  55. Peat T, Galloway A, Toumpis A et al (2017) The erosion performance of particle reinforced metal matrix composite coatings produced by co-deposition cold gas dynamic spraying. Appl Surf Sci 396:1623–1634. https://doi.org/10.1016/j.apsusc.2016.10.155

    Article  CAS  Google Scholar 

  56. Rahman M, Haider J, Hashmi MSJ (2014) Health and safety issues in emerging surface engineering techniques. Compr Mater Process 8:35–47. https://doi.org/10.1016/B978-0-08-096532-1.00806-2

    Article  Google Scholar 

  57. Li XZ, Wang YT, Xu G et al (2014) Thick Ni based amorphous composite coating with good erosion wear resistance. Mater Res Innov 18:S4777–S4781. https://doi.org/10.1179/1432891714Z.000000000780

    Article  CAS  Google Scholar 

  58. Kumar GSP, Shinde A, Yadav Y et al (2021) Investigations on slurry erosive on wear performance of HVOF-sprayed Cr2O3 coatings on aluminum alloy. J Bio Tribocorros 7:106. https://doi.org/10.1007/s40735-021-00543-2

    Article  Google Scholar 

  59. Jhansi Lakshmi KP, Sogalad I, Basavarajappa S (2020) Erosive wear behaviour of NiCrAlY/B4C/cenosphere composite coating. Mater Today Proc 38:3177–3180. https://doi.org/10.1016/j.matpr.2020.09.645

    Article  CAS  Google Scholar 

  60. Keshavamurthy R, Naveena BE, Ramesh CS, Haseebuddin MR (2021) Evaluation of slurry erosive wear performance of plasma-sprayed flyash-TiO2 composite coatings. J Bio Tribocorros 7:92. https://doi.org/10.1007/s40735-021-00525-4

    Article  Google Scholar 

  61. Reddy GMS, Ramesh S, Anne G et al (2022) Solid particle erosion behaviour of plasma-sprayed (WC–Co)/(Cr3C2–NiCr) coatings. J Bio Tribocorros. https://doi.org/10.1007/s40735-022-00629-5

    Article  Google Scholar 

  62. Tham LM, Su L, Cheng L, Gupta M (1999) Micromechanical modeling of processing-induced damage in Al-SiC metal matrix composites synthesized using disintegrated melt deposition technique. Mater Res Bull 34:71–79. https://doi.org/10.1179/026708399101505185

    Article  CAS  Google Scholar 

  63. Gupta M, Lai MO, Soo CY (1995) Processing-microstructure-mechanical properties of an Al-Cu/SiC metal matrix composite synthesized using disintegrated melt deposition technique. Mater Res Bull 30:1525–1534. https://doi.org/10.1016/0025-5408(95)00141-7

    Article  Google Scholar 

  64. Gupta M, Ling S (1997) Regarding the comparative effect of Si/SiC addition on the microstructure and mechanical properties of an Al alloy processed using disintegrated melt deposition technique. Mater Des 18:139147. https://doi.org/10.1016/S0261-3069(97)00051-4

    Article  Google Scholar 

  65. Jayalakshmi S, Singh RA, Sankaranarayanan S et al (2018) Structure-property correlation in magnesium nanocomposites synthesized by disintegrated melt deposition technique. Mater Today Proc 5:16280–16285. https://doi.org/10.1016/j.matpr.2018.05.120

    Article  CAS  Google Scholar 

  66. Hassan SF, Gupta M (2002) Development of a novel magnesium–copper based composite with improved mechanical properties. Mater Res Bull 37:377–389. https://doi.org/10.1016/S0025-5408(01)00772-3

    Article  CAS  Google Scholar 

  67. Wen ZH, Bai Y, Yang JF, Huang J (2016) Effect of vacuum re-melting on the solid particles erosion behavior of Ni60-NiCrMoY composite coatings prepared by plasma spraying. Vacuum 134:73–82. https://doi.org/10.1016/j.vacuum.2016.09.020

    Article  CAS  Google Scholar 

  68. Jiang WH, Kovacevic R (2007) Laser deposited TiC/H13 tool steel composite coatings and their erosion resistance. J Mater Process Technol 186:331–338. https://doi.org/10.1016/j.jmatprotec.2006.12.053

    Article  CAS  Google Scholar 

  69. Tian Y, Zhao H, Yang R et al (2022) In-situ SEM investigation on stress-induced microstructure evolution of austenitic stainless steels subjected to cavitation erosion and cavitation erosion-corrosion. Mater Des 213:110314. https://doi.org/10.1016/j.matdes.2021.110314

    Article  CAS  Google Scholar 

  70. Zhang Z, Kovacevic R (2019) Laser cladding of iron-based erosion resistant metal matrix composites. J Manuf Process 38:63–75. https://doi.org/10.1016/j.jmapro.2019.01.001

    Article  Google Scholar 

  71. Thapliyal S, Dwivedi DK (2018) Barium titanate reinforced nickel aluminium bronze surface composite by friction stir processing. Mater Sci Technol 34:366–377. https://doi.org/10.1080/02670836.2017.1393203

    Article  CAS  Google Scholar 

  72. Singh PK, Mishra SB (2020) Erosion performance of detonation gun deposited WC–12Co, Stellite 6 and Stellite 21 coatings on SAE213-T12 steel. Tribol-Mater Surf Interfaces 14:229–239. https://doi.org/10.1080/17515831.2020.1785232

    Article  CAS  Google Scholar 

  73. Kandasamy S, Rathinasamy P, Nagarajan N et al (2022) Assessment of erosion rate on AA7075 based surface hybrid composites fabricated through friction stir processing by Taguchi optimization approach. J Adhes Sci Technol 36:584–605. https://doi.org/10.1080/01694243.2021.1929018

    Article  CAS  Google Scholar 

  74. Singh S, Kaur M (2016) Solid particle erosion behaviour of NiCrFeSiBC/Cr3C2 composite coatings—Part II. Surf Eng 32:475–489. https://doi.org/10.1179/1743294414Y.0000000419

    Article  CAS  Google Scholar 

  75. Reddy GM, Rao KS, Mohandas T (2009) Friction surfacing: novel technique for metal matrix composite coating on aluminium silicon alloy. Surf Eng 25:25–30. https://doi.org/10.1179/174329408X298238

    Article  CAS  Google Scholar 

  76. Santana YY, La Barbera-Sosa JG, Bencomo A et al (2012) Influence of mechanical properties of tungsten carbide-cobalt thermal spray coatings on their solid particle erosion behaviour. Surf Eng 28:237–243. https://doi.org/10.1179/1743294411Y.0000000016

    Article  CAS  Google Scholar 

  77. Finnie I (1960) Erosion of surfaces by solid particles. Wear 3:87–103. https://doi.org/10.1016/0043-1648(60)90055-7

    Article  Google Scholar 

  78. Finnie I (1972) Some observations on the erosion of ductile metals. Wear 19:81–90. https://doi.org/10.1016/0043-1648(72)90444-9

    Article  CAS  Google Scholar 

  79. Hutchings IM (1981) A model for the erosion of metals by spherical particles at normal incidence. Wear 70:269–281. https://doi.org/10.1016/0043-1648(81)90347-1

    Article  CAS  Google Scholar 

  80. Bitter JGA (1963) A study of erosion phenomena Part I. Wear 6:5–21. https://doi.org/10.1016/0043-1648(63)90003-6

    Article  Google Scholar 

  81. Bitter JGA (1963) A study of erosion phenomena: Part II. Wear 6:169–190. https://doi.org/10.1016/0043-1648(63)90073-5

    Article  Google Scholar 

  82. Mohamed H (1989) A model for Abrasive-Waterjet (AWJ) machining. ASME J Eng Mater Technol 111:154–162. https://doi.org/10.1115/1.3226448

    Article  Google Scholar 

  83. Sun X, Wang Y, Li DY (2013) Mechanical properties and erosion resistance of ceria nano-particle-doped ultrafine WC-12Co composite prepared by spark plasma sintering. Wear 301:406–414. https://doi.org/10.1016/j.wear.2013.01.113

    Article  CAS  Google Scholar 

  84. Fang Q, Sidky PS, Hocking GM (1999) Erosion resistance of continuously reinforced SiC-Ti -based metal matrix composites by a SiC/water slurry jet. Wear 233–235:174–181. https://doi.org/10.1016/S0043-1648(99)00232-X

    Article  Google Scholar 

  85. Shewmon P, Sundararajan G (1983) The erosion of metals. Ann Rev Mater Sci 13:301–319

    Article  CAS  Google Scholar 

  86. Mantry S, Behera D, Mishra SK et al (2013) Erosive wear analysis of plasma-sprayed Cu Slag-Al composite coatings. Tribol Trans 56:196–202. https://doi.org/10.1080/10402004.2012.737503

    Article  CAS  Google Scholar 

  87. Sharma V, Kaur M, Bhandari S (2019) Slurry erosion performance study of high velocity flame sprayed Ni-Al2O3 coating under hydro accelerated conditions. Mater Res Express 6:076436. https://doi.org/10.1088/2053-1591/ab1927

    Article  CAS  Google Scholar 

  88. Shivalingaiah K, Sridhar KS, Sethuram D et al (2019) HVOF sprayed Inconel 718/cubic boron nitride composite coatings: microstructure, microhardness and slurry erosive behaviour. Mater Res Express 6:12658i. https://doi.org/10.1088/2053-1591/ab7067

    Article  CAS  Google Scholar 

  89. Lohit RB, Horakeri GS, Bhovi PM (2016) Jet slurry erosion performance of composite clad and its characterization. IOP Conf Ser 149:012059. https://doi.org/10.1088/1757-899X/149/1/012059

    Article  Google Scholar 

  90. Chen Y, Wu Y, Hong S et al (2020) The effect of impingement angle on erosion wear characteristics of HVOF sprayed WC-Ni and WC-Cr3C2-Ni cermet composite coatings. Mater Res Express 7:026503. https://doi.org/10.1088/2053-1591/ab6d31

    Article  CAS  Google Scholar 

  91. Wang BQ, Shui ZR (2003) Hot erosion behavior of carbide-metal composite coatings. J Mater Process Technol 143–144:87–92. https://doi.org/10.1016/S0924-0136(03)00326-1

    Article  CAS  Google Scholar 

  92. Nithin HS, Desai V, Ramesh MR (2018) Elevated temperature solid particle erosion behaviour of carbide reinforced CoCrAlY composite coatings. Mater Res Express 5:066529. https://doi.org/10.1088/2053-1591/aac998

    Article  CAS  Google Scholar 

  93. Panwar V, Grover NK, Chawla V (2020) Erosion studies of plasma sprayed WC-12%Co, Cr3C2–25%NiCr, 80%Ni-20%Cr, 87%Al2O3–13%TiO2 coatings on ASTM A36 steel. Mater Res Express 7:026520. https://doi.org/10.1088/2053-1591/ab7072

    Article  CAS  Google Scholar 

  94. Pethuraj M, Uthayakumar M, Rajakarunakaran S, Rajesh S (2018) Solid particle erosive behaviour of sillimanite reinforced aluminium metal matrix composites. Mater Res Express 5:066514. https://doi.org/10.1088/2053-1591/aac8ba

    Article  CAS  Google Scholar 

  95. Praveen AS, Sarangan J, Suresh S, Siva Subramanian J (2015) Erosion wear behaviour of plasma sprayed NiCrSiB/Al2O3 composite coating. Int J Refract Metals Hard Mater 52:209–218. https://doi.org/10.1016/j.ijrmhm.2015.06.005

    Article  CAS  Google Scholar 

  96. Yadav PK, Dixit G (2019) Investigation of high stress abrasive and erosive wear behaviour of AA336/TiB2/SiC ex situ composites. J Bio Tribocorros 5:1–19. https://doi.org/10.1007/s40735-019-0256-2

    Article  Google Scholar 

  97. Pool KV, Dharan CKH, Finnie I (1986) Erosive wear of composite materials. Wear 107:1–12. https://doi.org/10.1016/0043-1648(86)90043-8

    Article  CAS  Google Scholar 

  98. Greenfield IG (1993) Erosion of metal matrix composites. In: Advances in composite tribology (composite materials series). Elsevier, pp 451–465. https://doi.org/10.1016/B978-0-444-89079-5.50016-7

  99. Lindsley BA, Marder AR (1998) Solid particle erosion of an Fe-Fe3C metal matrix composite. Metall Mater Trans A 29:1071–1079. https://doi.org/10.1007/s11661-998-0299-3

    Article  Google Scholar 

  100. Selvaraj SK, Nagarajan MK, Kumaraswamidhas LA (2017) An investigation of abrasive and erosion behaviour of AA 2618 reinforced with Si3N4, AlN and ZrB2 in situ composites by using optimization techniques. Arch Civ Mech Eng 17:43–54. https://doi.org/10.1016/j.acme.2016.08.003

    Article  Google Scholar 

  101. Ninham AJ, Levy AV (1988) The erosion of carbide-metal composites. Wear 121:347–361. https://doi.org/10.1016/0043-1648(88)90210-4

    Article  CAS  Google Scholar 

  102. Ritapure PP, Kharde YR (2020) Study of Mechanical properties and erosion wear behaviour of novel Al-25Zn alloy/SiC/Graphite hybrid composites. Mater Today Proc 22:2215–2224. https://doi.org/10.1016/j.matpr.2020.03.302

    Article  CAS  Google Scholar 

  103. Sanman S, Sreenivas Rao KV (2018) Effect of angle of impingement on air jet erosion wear behavior of chill cast aluminum-boron carbide composites. Mater Today Proc 5:21107–21110. https://doi.org/10.1016/j.matpr.2018.06.506

    Article  CAS  Google Scholar 

  104. Hu Y, Pan J, Dai Q et al (2022) Solid particle erosion-wear behaviour of SiC particle-reinforced Si matrix composite and neat Si—a comparison. Wear 496–497:204286. https://doi.org/10.1016/j.wear.2022.204286

    Article  CAS  Google Scholar 

  105. Li C, Li Y, Shi J et al (2022) Interfacial characterization and erosive wear performance of zirconia toughened alumina ceramics particles reinforced high chromium white cast irons composites. Tribol Int 165:107262. https://doi.org/10.1016/j.triboint.2021.107262

    Article  CAS  Google Scholar 

  106. Yadav PK, Dixit G (2019) Investigation of erosion-corrosion of aluminium alloy composites: influence of slurry composition and speed in a different mediums. J King Saud Univ Sci 31:674–683. https://doi.org/10.1016/j.jksus.2019.02.003

    Article  Google Scholar 

  107. Balu P, Kong F, Hamid S, Kovacevic R (2013) Finite element modeling of solid particle erosion in AISI 4140 steel and nickel-tungsten carbide composite material produced by the laser-based powder deposition process. Tribol Int 62:18–28. https://doi.org/10.1016/j.triboint.2013.01.021

    Article  CAS  Google Scholar 

  108. Saravanan RA, Samajdar I, Surappa MK (1998) Microstructural characterisation of the subsurface plastic zone formed during erosion of A356 AI alloy and composites. Wear 215:223–246. https://doi.org/10.1016/S0043-1648(97)00248-2

    Article  CAS  Google Scholar 

  109. Lynn RS, Wong KK, Clark MCI (1991) On the particle size effect in slurry erosion. Wear 149:55–71. https://doi.org/10.1016/0043-1648(91)90364-Z

    Article  CAS  Google Scholar 

  110. Prathap Singh S, Prabhuram T, Vinoth Babu K et al (2020) Solid particle erosion studies on SiC reinforced functionally graded aluminium matrix composites. IOP Conf Ser 764:012005. https://doi.org/10.1088/1757-899X/764/1/012005

    Article  Google Scholar 

  111. Acharya SK, Dikshit V, Mishra P (2008) Erosive wear behaviour of redmud filled metal matrix composite. J Reinf Plast Compos 27:145–152. https://doi.org/10.1177/0731684407082543

    Article  CAS  Google Scholar 

Download references

Funding

No funding has been received.

Author information

Authors and Affiliations

Authors

Contributions

SA contributed to Literature Survey; Conceptualization; Data Curation; and Writing & Editing of the Original Draft, BAR contributed to Supervision; Investigation; & Editing of the Original Draft, & DE contributed to Data Curation and Investigation.

Corresponding author

Correspondence to S. Annamalai.

Ethics declarations

Competing interests

The authors declare that they do not have any financial or non-financial interests that are directly or indirectly related to the work submitted for publication.

Ethical Approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Annamalai, S., Anand Ronald, B. & Ebenezer, D. The Effect of Processing Techniques and Operating Parameters on the Erosion Wear Behavior of Particle-Reinforced Metal Matrix and Surface Composites: A Review. J Bio Tribo Corros 9, 73 (2023). https://doi.org/10.1007/s40735-023-00792-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40735-023-00792-3

Keywords

Navigation