Skip to main content

Advertisement

Log in

Enhanced Performance of AA7075/SiC/ZrC Hybrid Composite through Microwave Assisted Powder Metallurgy Techniques

  • Original Research Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In the present work, ball milling followed by conventional and microwave sintering was used to develop AA7075/SiC/ZrC hybrid composites. Microwave sintering was performed on the optimized volume fractioned AA7075/SiC/ZrC hybrid composite. Addition of ZrC particles to the optimized AA7075/SiC composite improved performance up to 2% ZrC level. The microwave sintered S8Z2 (8% SiC + 2% ZrC) composite exhibited ultimate tensile and compressive strengths of 461 and 510 MPa, respectively, and the same composite sintered through a conventional technique showed maximum tensile and compression strengths of 375 and 420 MPa. Microwave sintered composites with an average grain size of 4.99 µm did not lead to secondary phase generation. A Conventionally sintered composite with an average grain size of 8.59 µm has been shown to have an Al3Zr secondary phase. Restricting grain growth due to quick sintering times, low temperatures, and rapid heating rates promoted grain boundary and dislocation strengthening mechanisms. The generation of the Al3Zr secondary phase degraded the mechanical properties of the conventionally sintered composite. Microwave sintered composites had low pore levels due to uniform heat distribution and a small allowance for the thermal mismatch. A conventionally sintered S8Z2 composite showed a pore level of 2.89%, while a microwave sintered composite showed a pore level of 1.39%, representing densification through rapid diffusion in microwave processing. Overall, the microwave sintered optimized hybrid composite showed an enhancement of 184.5% and 118% in tensile and compression strengths when compared to the base alloy material.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. C. Fenghong, C. Chang, W. Zhenyu, T. Muthuramalingam, and G. Anbuchezhiyan, Effects of Silicon Carbide and Tungsten Carbide in Aluminium Metal Matrix Composites, Silicon, 2019, 11, p 2625–2632. https://doi.org/10.1007/s12633-018-0051-6

    Article  CAS  Google Scholar 

  2. K. Ravikumar, K. Kiran, and V.S. Sreebalaji, Characterization of Mechanical Properties of Aluminium/Tungsten Carbide Composites, Meas. J. Int. Meas. Confed., 2017, 102, p 142–149. https://doi.org/10.1016/j.measurement.2017.01.045

    Article  Google Scholar 

  3. M.S. Surya and S.K. Gugulothu, Fabrication, Mechanical and Wear Characterization of Silicon Carbide Reinforced Aluminium 7075 Metal Matrix Composite, Silicon, 2021, 14, p 2023–2032. https://doi.org/10.1007/s12633-021-00992-x

    Article  CAS  Google Scholar 

  4. D. Dey, A. Bhowmik, and A. Biswas, Effect of SiC Content on Mechanical and Tribological Properties of Al2024-SiC Composites, Silicon, 2020, 14, p 1–11. https://doi.org/10.1007/s12633-020-00757-y

    Article  CAS  Google Scholar 

  5. A. Alizadeh, A. Abdollahi, and M.J. Radfar, Processing, Characterization, Room Temperature Mechanical Properties and Fracture Behavior of Hot Extruded Multi-scale B4C Reinforced 5083 Aluminum Alloy Based Composites, Trans. Nonferrous Met. Soc. China, 2017, 27, p 1233–47. https://doi.org/10.1016/S1003-6326(17)60144-4

    Article  CAS  Google Scholar 

  6. G. Manohar, K.M. Pandey, and S.R. Maity, Effect of Sintering Mechanisms on Mechanical Properties of AA7075/B4C Composite Fabricated by Powder Metallurgy Techniques, Ceram. Int., 2021, 47, p 15147–15154. https://doi.org/10.1016/j.ceramint.2021.02.073

    Article  CAS  Google Scholar 

  7. A. Prasad Reddy, P. Vamsi Krishna, and R.N. Rao, Tribological Behaviour of Al6061-2SiCxGr Hybrid Metal Matrix Nanocomposites Fabricated through Ultrasonically Assisted Stir Casting Technique, Silicon, 2019, 11, p 2853–2871. https://doi.org/10.1007/s12633-019-0072-9

    Article  CAS  Google Scholar 

  8. G. Manohar, S.R. Maity, and K.M. Pandey, Microstructural and Mechanical Properties of Microwave Sintered AA7075/Graphite/SiC Hybrid Composite Fabricated by Powder Metallurgy Techniques, Silicon, 2021, 14, p 5179–5189. https://doi.org/10.1007/s12633-021-01299-7

    Article  CAS  Google Scholar 

  9. R. Askarnia, B. Ghasemi, S.R. Fardi, H.R. Lashgari, and E. Adabifiroozjaei, Fabrication of High Strength Aluminum-Graphene Oxide (GO) Composites Using Microwave Sintering, Adv. Compos. Mater., 2021, 30, p 271–285. https://doi.org/10.1080/09243046.2020.1811929

    Article  CAS  Google Scholar 

  10. M. Rashad, F. Pan, A. Tang, and M. Asif, Effect of Graphene Nanoplatelets Addition on Mechanical Properties of Pure Aluminum Using a Semi-powder Method, Prog. Nat. Sci. Mater. Int., 2014, 24, p 101–108. https://doi.org/10.1016/j.pnsc.2014.03.012

    Article  CAS  Google Scholar 

  11. A. Patil, M.S.K.K.Y. Nartu, F. Ozdemir, R. Banerjee, R.K. Gupta, and T. Borkar, Strengthening Effects of Multi-walled Carbon Nanotubes Reinforced Nickel Matrix Nanocomposites, J. Alloys Compd., 2021, 876, p 159981. https://doi.org/10.1016/j.jallcom.2021.159981

    Article  CAS  Google Scholar 

  12. M.P. Reddy, M.A. Himyan, F. Ubaid, R.A. Shakoor, M. Vyasaraj, P. Gururaj, M. Yusuf, A.M.A. Mohamed, and M. Gupta, Enhancing Thermal and Mechanical Response of Aluminum Using Nanolength Scale TiC Ceramic Reinforcement, Ceram. Int., 2018, 44, p 9247–9254. https://doi.org/10.1016/j.ceramint.2018.02.135

    Article  CAS  Google Scholar 

  13. S.M. Hong, J.J. Park, E.K. Park, K.Y. Kim, J.G. Lee, M.K. Lee, C.K. Rhee, and J.K. Lee, Fabrication of Titanium Carbide Nano-Powders by a Very High Speed Planetary Ball Milling with a Help of Process Control Agents, Powder Technol., 2015, 274, p 393–401. https://doi.org/10.1016/j.powtec.2015.01.047

    Article  CAS  Google Scholar 

  14. H. Kaftelen, M.L. Öveçoĝlu, H. Henein, and H. Çimenoĝlu, ZrC Particle Reinforced Al-4wt.% Cu Alloy Composites Fabricated by Mechanical Alloying and Vacuum Hot Pressing: Microstructural Evaluation and Mechanical properties, Mater. Sci. Eng. A, 2010, 527, p 5930–5938. https://doi.org/10.1016/j.msea.2010.06.007

    Article  CAS  Google Scholar 

  15. M. Awad, N.M. Hassan, and S. Kannan, Mechanical Properties of Melt Infiltration and Powder Metallurgy Fabricated Aluminum Metal Matrix Composite, Proc. Inst. Mech. Eng. Part B J. Eng. Manuf., 2021, 235, p 2093–2107. https://doi.org/10.1177/09544054211015956

    Article  CAS  Google Scholar 

  16. J. Radhakrishnan and R. Nachimuthu, Microstructure, Mechanical Properties and Reciprocal Dry Sliding Wear Behaviour of As-cast and Heat-Treated TiN/Al-7Si Functionally Graded Composite, Proc. Inst. Mech. Eng. Part B J. Eng. Manuf., 2022, 236, p 1317–1331. https://doi.org/10.1177/09544054221075879

    Article  CAS  Google Scholar 

  17. V. Pouyafar and R. Meshkabadi, Evaluating the Morphology and Distribution Uniformity of AZ91D-SiC Composite Powder Produced from Magnesium Chips by Mechanical Milling and Alloying Method, Proc. Inst. Mech. Eng. Part B J. Eng. Manuf., 2021, 236, p 659–667. https://doi.org/10.1177/09544054211040616

    Article  CAS  Google Scholar 

  18. J. Prakash, S. Gopalakannan, and V.K. Chakravarthy, Mechanical Characterization Studies of Aluminium Alloy 7075 Based Nanocomposites, Silicon, 2021, 14, p 1683–1694. https://doi.org/10.1007/s12633-021-00979-8

    Article  CAS  Google Scholar 

  19. Z.Y. Hu, Z.H. Zhang, X.W. Cheng, F.C. Wang, Y.F. Zhang, and S.L. Li, A Review of Multi-physical Fields Induced Phenomena and Effects in Spark Plasma Sintering: Fundamentals and Applications, Mater. Des., 2020, 191, p 108662. https://doi.org/10.1016/j.matdes.2020.108662

    Article  CAS  Google Scholar 

  20. R. Harichandran and N. Selvakumar, Effect of Nano/Micro B4C Particles on the Mechanical Properties of Aluminium Metal Matrix Composites Fabricated by Ultrasonic Cavitation-Assisted Solidification Process, Arch. Civ. Mech. Eng., 2016, 16, p 147–158. https://doi.org/10.1016/j.acme.2015.07.001

    Article  Google Scholar 

  21. R.K. Gupta, K.R. Ravi, V. Udhayabanu, and D.R. Peshwe, Effect of Ultrasonic Treatment on Microstructural and Mechanical Properties of Al 7075/Grp Composite, Mater. Chem. Phys., 2022, 281, p 125905. https://doi.org/10.1016/j.matchemphys.2022.125905

    Article  CAS  Google Scholar 

  22. J. Zhao and Q. Li, Effect of Magnetic-Mechanical Coupled Stirring on the Distribution of B4C Particles in Al-B4C Composites, J. Mater. Eng. Perform., 2022, 31, p 907–917. https://doi.org/10.1007/s11665-021-06294-y

    Article  CAS  Google Scholar 

  23. A. Laik, K. Bhanumurthy, and G.B. Kale, Intermetallics in the Zr-Al Diffusion Zone, Intermetallics, 2004, 12, p 69–74. https://doi.org/10.1016/j.intermet.2003.09.002

    Article  CAS  Google Scholar 

  24. D. Agaogullari, H. Gökçe, A. Genç, I. Duman, and M. L. Öveçoglu, Characterization of Mechanically Alloyed and Sintered ZRC Particulate Reinforced Al Matrix Composites. Metal 2010–19th International Conference Metallurgy Materials Conference Proceedings (2010), p. 702–708

  25. G. Manohar, K.M. Pandey, and S.R. Maity, Effect of Microwave Sintering on the Microstructure and Mechanical Properties of AA7075/B4C/ZrC Hybrid Nano Composite Fabricated by Powder Metallurgy Techniques, Ceram. Int., 2021, 47, p 32610–32618. https://doi.org/10.1016/j.ceramint.2021.08.156

    Article  CAS  Google Scholar 

  26. S. Rathore, R.K.R. Singh, and K.L.A. Khan, Effect of Process Parameters on Mechanical Properties of Aluminum Composite Foam Developed by Friction Stir Processing, Proc. Inst. Mech. Eng. Part B J. Eng. Manuf., 2021, 235, p 1892–1903. https://doi.org/10.1177/09544054211021341

    Article  CAS  Google Scholar 

  27. V. Popov, A. Borunova, E. Shelekhov, V. Cheverikin, and I. Khodos, Several Aspects of Interaction Between Chrome and Nanodiamond Particles in Metal Matrix Composites When Being Heated, Inventions, 2022, 7, p 75. https://doi.org/10.3390/inventions7030075

    Article  Google Scholar 

  28. M. Penchal Reddy, R.A. Shakoor, A.M.A. Mohamed, and M. Gupta, Microwave Rapid Sintering of Al-Metal Matrix Composites: A Review on the Effect of Reinforcements, Microstructure and Mechanical Properties, Metals (Basel), 2016, 6, p 143. https://doi.org/10.3390/met6070143

    Article  Google Scholar 

  29. J.C. Viala, J. Bouix, G. Gonzalez, and C. Esnouf, Chemical Reactivity of Aluminium with Boron Carbide, J. Mater. Sci., 1997, 32, p 4559–4573. https://doi.org/10.1023/A:1018625402103

    Article  CAS  Google Scholar 

  30. R. Ananthanarayanan, N.S. Rai, M. Chand, N. Prasad, R. Ram, and M. Naicker, Densification Behaviour of Sintered-Forged Aluminium Composite Preforms, Proc. Inst. Mech. Eng. Part B J. Eng. Manuf., 2014, 228, p 441–449. https://doi.org/10.1177/0954405413501811

    Article  CAS  Google Scholar 

  31. R.R. Mishra and A.K. Sharma, Microwave-Material Interaction Phenomena: Heating Mechanisms, Challenges and Opportunities in Material Processing, Compos. Part A Appl. Sci. Manuf., 2016, 81, p 78–97. https://doi.org/10.1016/j.compositesa.2015.10.035

    Article  CAS  Google Scholar 

  32. M. Bhattacharya and T. Basak, A Review on the Susceptor Assisted Microwave Processing of Materials, Energy, 2016, 97, p 306–338. https://doi.org/10.1016/j.energy.2015.11.034

    Article  Google Scholar 

  33. A. Kamboj, S. Kumar, and H. Singh, Fabrication and Characterization of Al6063/SiC Composites, Proc. Inst. Mech. Eng. Part B J. Eng. Manuf., 2013, 227, p 1777–1787. https://doi.org/10.1177/0954405413493618

    Article  CAS  Google Scholar 

  34. Y.J. Joo and K.Y. Cho, Microwave-Assisted Heating Behavior of Amorphous SiC Fibers Derived from Polycarbosilane, Mater. Res. Express, 2021, 8, p 035603. https://doi.org/10.1088/2053-1591/abed0e

    Article  CAS  Google Scholar 

  35. S. Sivasankaran, K. Sivaprasad, R. Narayanasamy, and P.V. Satyanarayana, X-ray Peak Broadening Analysis of AA 6061100x–x wt.% Al2O3 Nanocomposite Prepared by Mechanical Alloying, Mater. Charact., 2011, 62, p 661–672. https://doi.org/10.1016/j.matchar.2011.04.017

    Article  CAS  Google Scholar 

  36. X. Pang, Y. Xian, W. Wang, and P. Zhang, Tensile Properties and Strengthening Effects of 6061Al/12 wt.%B4C Composites Reinforced with Nano-Al2O3 Particles, J. Alloys Compd., 2018, 768, p 476–484. https://doi.org/10.1016/j.jallcom.2018.07.072

    Article  CAS  Google Scholar 

  37. S. Singh, D. Gupta, and V. Jain, Recent Applications of Microwaves in Materials Joining and Surface Coatings, Proc. Inst. Mech. Eng. Part B J. Eng. Manuf., 2016, 230, p 603–617. https://doi.org/10.1177/0954405414560778

    Article  CAS  Google Scholar 

  38. M.R. Mattli, A. Khan, P.R. Matli, M. Yusuf, A.A. Al, R.A. Shakoor, and M. Gupta, Effect of Inconel625 Particles on the Microstructural, Mechanical, and Thermal Properties of Al-Inconel625 Composites, Mater. Today Commun., 2020, 25, p 101564. https://doi.org/10.1016/j.mtcomm.2020.101564

    Article  CAS  Google Scholar 

  39. M. Kara, T. Coskun, and A. Gunoz, Effect of WC Particles on the Mechanical Behavior and Machinability of Aluminum Matrix Composites, Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci., 2022, 236, p 10122–10130. https://doi.org/10.1177/09544062221098864

    Article  CAS  Google Scholar 

  40. N. Vidakis, M. Petousis, E. Velidakis, N. Mountakis, P.E. Fischer-Griffiths, S.A. Grammatikos, and L. Tzounis, Mechanical Reinforcement Course of 3D Printed Polypropylene–Antimony Doped Tin Oxide Nanocomposites Versus Filler Loading, Adv. Compos. Mater., 2022, 31, p 235–256. https://doi.org/10.1080/09243046.2021.1973173

    Article  CAS  Google Scholar 

  41. S. Han, Z. Zhang, P. Ruan, S. Cheng, and D. Xue, Fabrication of Circular Cooling Channels by Cold Metal Transfer Based Wire and Arc Additive Manufacturing, Proc. Inst. Mech. Eng. Part B J. Eng. Manuf., 2021, 235, p 1715–1726. https://doi.org/10.1177/0954405421995613

    Article  Google Scholar 

  42. O. Yilmaz and A.A. Ugla, Shaped Metal Deposition Technique in Additive Manufacturing: A Review, Proc. Inst. Mech. Eng. Part B J. Eng. Manuf., 2016, 230, p 1781–1798. https://doi.org/10.1177/0954405416640181

    Article  CAS  Google Scholar 

  43. G. Arora, H. Pathak, and S. Zafar, Fabrication and Characterization of Microwave Cured High-Density Polyethylene/Carbon Nanotube and Polypropylene/Carbon Nanotube Composites, J. Compos. Mater., 2019, 53, p 2091–2104. https://doi.org/10.1177/0021998318822705

    Article  CAS  Google Scholar 

  44. K. Zhao, Z. Duan, J. Liu, G. Kang, and L. An, Strengthening Mechanisms of 15 vol.% Al2O3 Nanoparticles Reinforced Aluminum Matrix Nanocomposite Fabricated by High Energy Ball Milling and Vacuum Hot Pressing, Acta Metall. Sin., 2021 https://doi.org/10.1007/s40195-021-01306-1

    Article  Google Scholar 

  45. H. Lee, J.H. Choi, M.C. Jo, D. Lee, S. Shin, I. Jo, S.K. Lee, and S. Lee, Effects of SiC Particulate Size on Dynamic Compressive Properties in 7075-T6 Al-SiCp Composites, Mater. Sci. Eng. A, 2018, 738, p 412–419. https://doi.org/10.1016/j.msea.2018.09.082

    Article  CAS  Google Scholar 

  46. Y.S. Chen, T.J. Chen, S.Q. Zhang, and P.B. Li, Effect of Ball Milling on Microstructural Evolution during Partial Remelting of 6061 Aluminum Alloy Prepared by Cold-Pressing of Alloy Powders, Trans. Nonferrous Met. Soc. China, 2015, 25, p 2113–21. https://doi.org/10.1016/S1003-6326(15)63822-5

    Article  CAS  Google Scholar 

  47. L. Lu, M.O. Lai, and S. Zhang, Diffusion in Mechanical Alloying, J. Mater. Process. Technol., 1997, 67, p 100–104. https://doi.org/10.1016/S0924-0136(96)02826-9

    Article  Google Scholar 

  48. M.S. Song, B. Huang, M.X. Zhang, and J.G. Li, In Situ Synthesis of ZrC Particles and its Formation Mechanism by Self-Propagating Reaction from Al-Zr-C Elemental Powders, Powder Technol., 2009, 191, p 34–38. https://doi.org/10.1016/j.powtec.2008.09.005

    Article  CAS  Google Scholar 

  49. A. Melaibari, A. Fathy, M. Mansouri, and M.A. Eltaher, Experimental and Numerical Investigation on Strengthening Mechanisms of Nanostructured Al-SiC Composites, J. Alloys Compd., 2019, 774, p 1123–1132. https://doi.org/10.1016/j.jallcom.2018.10.007

    Article  CAS  Google Scholar 

  50. R. Liu, C. Wu, J. Zhang, G. Luo, Q. Shen, and L. Zhang, Microstructure and Mechanical Behaviors of the Ultrafine Grained AA7075/B4C Composites Synthesized Via One-Step Consolidation, J. Alloys Compd., 2018, 748, p 737–44. https://doi.org/10.1016/j.jallcom.2018.03.152

    Article  CAS  Google Scholar 

  51. P. Roy, S. Singh, and K. Pal, Enhancement of Mechanical and Tribological Properties of SiC- and CB-Reinforced Aluminium 7075 Hybrid Composites through Friction Stir Processing, Adv. Compos. Mater., 2017, 28, p 1–18. https://doi.org/10.1080/09243046.2017.1405596

    Article  CAS  Google Scholar 

  52. H. Alihosseini, K. Dehghani, and J. Kamali, Microstructure Characterization, Mechanical Properties, Compressibility and Sintering Behavior of Al-B4C Nanocomposite Powders, Adv. Powder Technol., 2017, 28, p 2126–2134. https://doi.org/10.1016/j.apt.2017.05.019

    Article  CAS  Google Scholar 

  53. A. Alizadeh, E. Taheri-Nassaj, and H.R. Baharvandi, Preparation and Investigation of Al-4 wt.% B4C Nanocomposite Powders Using Mechanical Milling, Bull. Mater. Sci., 2011, 34, p 1039–1048. https://doi.org/10.1007/s12034-011-0158-5

    Article  CAS  Google Scholar 

  54. M.H. El-Axir, An Investigation into the Ball Burnishing of Aluminium Alloy 6061-T6, Proc. Inst. Mech. Eng. Part B J. Eng. Manuf., 2007, 221, p 1733–1742. https://doi.org/10.1243/09544054JEM818

    Article  CAS  Google Scholar 

  55. A. Javdani and A.H. Daei-Sorkhabi, Microstructural and Mechanical Behavior of Blended Powder Semisolid Formed Al7075/B4C Composites under Different Experimental Conditions, Trans. Nonferrous Met. Soc. China, 2018, 28, p 1298–310. https://doi.org/10.1016/S1003-6326(18)64767-3

    Article  CAS  Google Scholar 

  56. G. Manohar, K.M. Pandey, and S. Ranjan Maity, Effect of Compaction Pressure on Mechanical Properties of AA7075/B4C/Graphite Hybrid Composite Fabricated by Powder Metallurgy Techniques, Mater. Today Proc., 2021, 38, p 2157–2161. https://doi.org/10.1016/J.MATPR.2020.05.194

    Article  CAS  Google Scholar 

  57. G. Manohar, K.M. Pandey, and S.R. Maity, Effect of Variations in Microwave Processing Temperatures on Microstructural and Mechanical Properties of AA7075/SiC/Graphite Hybrid Composite Fabricated by Powder Metallurgy Techniques, Silicon, 2022, 14, p 7831–47. https://doi.org/10.1007/s12633-021-01554-x

    Article  CAS  Google Scholar 

  58. C. Suryanarayana, Mechanical Alloying and Milling, Prog. Mater. Sci., 2001, 46, p 1–184. https://doi.org/10.1016/S0079-6425(99)00010-9

    Article  CAS  Google Scholar 

  59. L. Zhang, G. Shi, K. Xu, W. Hao, Q. Li, W. Junyan, and Z. Wang, Phase Transformation and Mechanical Properties of B4C/Al Composites, J. Mater. Res. Technol., 2020, 9, p 2116–2126. https://doi.org/10.1016/j.jmrt.2019.12.042

    Article  CAS  Google Scholar 

  60. Z.Y. Xiu, G.Q. Chen, G.H. Wu, W.S. Yang, and Y.M. Liu, Effect of Volume Fraction on Microstructure and Mechanical Properties of Si3N4/Al Composites, Trans. Nonferrous Met. Soc. China, 2011, 21, p s285–s289. https://doi.org/10.1016/S1003-6326(11)61592-6

    Article  Google Scholar 

  61. Z. Zhang and D.L. Chen, Consideration of Orowan Strengthening Effect in Particulate-Reinforced Metal Matrix Nanocomposites: A Model for Predicting their Yield Strength, Scr. Mater., 2006, 54, p 1321–1326. https://doi.org/10.1016/j.scriptamat.2005.12.017

    Article  CAS  Google Scholar 

  62. J. Lai, Z. Zhang, and X.G. Chen, Precipitation Strengthening of Al-B4C Metal Matrix Composites Alloyed with Sc and Zr, J. Alloys Compd., 2013, 552, p 227–235. https://doi.org/10.1016/j.jallcom.2012.10.096

    Article  CAS  Google Scholar 

  63. G. Manohar, K.M. Pandey, and S.R. Maity, Effect of Spark Plasma Sintering on Microstructure and Mechanical Properties of AA7075/B4C/ZrC Hybrid Nanocomposite Fabricated by Powder Metallurgy Techniques, Mater. Chem. Phys., 2022, 282, p 126000. https://doi.org/10.1016/j.matchemphys.2022.126000

    Article  CAS  Google Scholar 

  64. E. Ghasali, M. Alizadeh, T. Ebadzadeh, A.H. Pakseresht, and A. Rahbari, Investigation on Microstructural and Mechanical Properties of B4C-Aluminum Matrix Composites Prepared by Microwave Sintering, J. Mater. Res. Technol., 2015, 4, p 411–415. https://doi.org/10.1016/J.JMRT.2015.02.005

    Article  CAS  Google Scholar 

  65. M.P. Reddy, V. Manakari, G. Parande, R.A. Shakoor, A.M.A. Mohamed, and M. Gupta, Structural, Mechanical and Thermal Characteristics of Al-Cu-Li Particle Reinforced Al-matrix Composites Synthesized by Microwave Sintering and Hot Extrusion, Compos. Part B Eng., 2019, 164, p 485–492. https://doi.org/10.1016/j.compositesb.2019.01.063

    Article  CAS  Google Scholar 

  66. H. Mohammed, M. Penchal Reddy, F. Ubaid, A. Shakoor, and A. Mohamed Amer Mohamed, Structural and Mechanical Properties of CeO2 Reinforced Al Matrix Nanocomposites, Adv. Mater. Lett., 2018, 9, p 602–605. https://doi.org/10.5185/amlett.2018.2030

    Article  CAS  Google Scholar 

  67. M.P. Reddy, R.A. Shakoor, G. Parande, V. Manakari, F. Ubaid, A.M.A. Mohamed, and M. Gupta, Enhanced Performance of Nano-Sized SiC Reinforced Al metal Matrix Nanocomposites Synthesized through Microwave Sintering and Hot Extrusion Techniques, Prog. Nat. Sci. Mater. Int., 2017, 27, p 606–614. https://doi.org/10.1016/j.pnsc.2017.08.015

    Article  CAS  Google Scholar 

  68. A. Khan, P.R. Matli, M. Nawaz, M.R. Mattli, G. Parande, V. Manakari, A. Shakoor, A.S. Aljaber, and M. Gupta, Microstructure and Mechanical Behavior of Hot Extruded Aluminum/Tin-Bismuth Composites Produced by Powder Metallurgy, Appl. Sci., 2020, 10, p 2812. https://doi.org/10.3390/app10082812

    Article  CAS  Google Scholar 

  69. A. Khan, M.W. Abdelrazeq, M.R. Mattli, M.M. Yusuf, A. Alashraf, P.R. Matli, and R.A. Shakoor, Structural and Mechanical Properties of Al-SiC-ZrO2 Nanocomposites Fabricated by Microwave Sintering Technique, Crystals, 2020, 10, p 904. https://doi.org/10.3390/cryst10100904

    Article  CAS  Google Scholar 

  70. M.R. Mattli, P.R. Matli, A. Khan, R.H. Abdelatty, M. Yusuf, Ashraf A. Al, R.G. Kotalo, and R.A. Shakoor, Study of Microstructural and Mechanical Properties of Al/SiC/TiO2 Hybrid Nanocomposites Developed by Microwave Sintering, Crystals, 2021, 11, p 1078. https://doi.org/10.3390/cryst11091078

    Article  CAS  Google Scholar 

  71. P.R. Matli, F. Ubaid, R.A. Shakoor, G. Parande, V. Manakari, M. Yusuf, A.M. Amer Mohamed, and M. Gupta, Improved Properties of Al-Si3N4 Nanocomposites Fabricated through a Microwave Sintering and Hot Extrusion Process, RSC Adv., 2017, 7, p 34401–10. https://doi.org/10.1039/C7ra04148a

    Article  CAS  Google Scholar 

  72. P.R. Matli, V. Manakari, G. Parande, M.R. Mattli, R.A. Shakoor, and M. Gupta, Improving Mechanical, Thermal and Damping Properties of Niti (Nitinol) Reinforced Aluminum Nanocomposites, J. Compos. Sci., 2020, 4, p 18–21. https://doi.org/10.3390/jcs4010019

    Article  CAS  Google Scholar 

  73. M.R. Mattli, A. Shakoor, P.R. Matli, and A.M.A. Mohamed, Microstructure and Compressive Behavior of Al-Y2O3 Nanocomposites Prepared by Microwave-Assisted Mechanical Alloying, Metals (Basel)., 2019, 9, p 1–9. https://doi.org/10.3390/met9040414

    Article  CAS  Google Scholar 

  74. M.P. Reddy, F. Ubaid, R.A. Shakoor, and A.M.A. Mohamed, Microstructure and Mechanical Behavior of Microwave Sintered Cu50Ti50 Amorphous Alloy Reinforced Al Metal Matrix Composites, JOM, 2018, 70, p 817–22. https://doi.org/10.1007/s11837-018-2831-2

    Article  CAS  Google Scholar 

Download references

Funding

No Funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guttikonda Manohar.

Ethics declarations

Conflict of interest

Authors don’t have any conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manohar, G., Kumar, A., Satyanarayana, M.V.N.V. et al. Enhanced Performance of AA7075/SiC/ZrC Hybrid Composite through Microwave Assisted Powder Metallurgy Techniques. J. of Materi Eng and Perform (2024). https://doi.org/10.1007/s11665-024-09405-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11665-024-09405-7

Keywords

Navigation