Skip to main content
Log in

The Lateral Suppressor-Like Gene, DgLsL, Alternated the Axillary Branching in Transgenic Chrysanthemum (Chrysanthemum × morifolium) by Modulating IAA and GA Content

  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

Abstract

The lateral suppressor-like gene DgLsL was transformed by agroinfection into chrysanthemum in both the sense and antisense directions. Sense transformants branched more profusely than the wild-type nontransformant, while branching in the antisense transformants was significantly suppressed. An analysis of DgLsL transcript abundance in the shoot tips revealed that expression was enhanced in the sense transformants and suppressed in the antisense ones. The shoot tip content of indole-3-acetic acid (IAA) was reduced in the sense transformants but enhanced in the antisense ones. The sense transformants had a lower content and the antisense transformants had a higher content of gibberellic acid (GA). Cytokinin content was not affected by the variation in DgLsL expression. We conclude that DgLsL controls shoot branching through its effect on IAA and GA levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

DgLsL :

lateral suppressor-like gene

CK:

nontransformed control

TS:

sense DgLsL transgenic

TAS:

antisense DgLsL transgenic

IAA:

indole-3-acetic acid

GA:

gibberellic acid

ZR:

zeatin riboside

References

  • Aguilar-Martínez JA, Poza-Carrión C, Cubas P (2007) Arabidopsis BRANCHED1 acts as an integrator of branching signals within axillary buds. Plant Cell 19:458–472. doi:10.1105/tpc.106.048934

    Article  PubMed  Google Scholar 

  • Arumingtyas EL, Floyd RS, Gregory MJ, Murfet IC (1992) Branching in Pisum: inheritance and allelism tests with 17 ramosus mutants. Pisum Genet 24:17–31

    Google Scholar 

  • Borner A, Plaschke J, Korzun V, Worland AJ (1996) The relationships between the dwarfing genes of wheat and rye. Euphytica 89:69–75. doi:10.1007/BF00015721

    Article  Google Scholar 

  • Catalano M, Hill TA (1969) Interaction between gibberellic acid and kinetin in overcoming apical dominance, natural and induced by IAA, in tomato (Lycopersicum esculentum Mill. cultivar potentate). Nature 222:985–986. doi:10.1038/222985a0

    Article  CAS  Google Scholar 

  • Catterou M, Dubois F, Smaets R, Vaniet S, Kichey T, Van Onckelen H, Sangwan-Norreel BS, Sangwan RS (2002) hoc: an Arabidopsis mutant overproducing cytokinins and expressing high in vitro organogenic capacity. Plant J 30:273–287. doi:10.1046/j.1365-313X.2002.01286.x

    Article  CAS  PubMed  Google Scholar 

  • Cline MG (1991) Apical dominance. Bot Rev 57:318–358. doi:10.1007/BF02858771

    Article  Google Scholar 

  • Cline MG (1996) Exogenous auxin effects on lateral bud outgrowth in decapitated shoot. Ann Bot (Lond) 78:255–266. doi:10.1006/anbo.1996.0119

    Article  CAS  Google Scholar 

  • Doebley J, Stec A, Gustus C (1995) Teosinte branchedl and the origin of maize: evidence for epistasis and the evolution of dominance. Genetics 141:333–346

    CAS  PubMed  Google Scholar 

  • Fujioka S, Hisakazu Y, Spray CR, Katsumi M, Phinney BO (1988) The dominant non-gibberellin-responding dwarf mutant (D8) of maize accumulates native gibberellins. Proc Natl Acad Sci U S A 85:9031–9035. doi:10.1073/pnas.85.23.9031

    Article  CAS  PubMed  Google Scholar 

  • Garrison R (1955) Studies in the development of axillary buds. Am J Bot 42:257–266. doi:10.2307/2438561

    Article  Google Scholar 

  • Greb T, Clarenz O, Schäfer E, Müller D, Herrero R, Schmitz G, Theres K (2003) Molecular analysis of the LATERAL SUPPRESSOR gene in Arabidopsis reveals a conserved control mechanism for axillary meristem formation. Genes Dev 17:1175–1187. doi:10.1101/gad.260703

    Article  CAS  PubMed  Google Scholar 

  • Gynheung A, Ebert PR, Mitta A, Ha SB (1988) Binary vectors. In: Gelvin SB, Schilperoort RA (eds) Plant molecular biology manual. Kluwer Academic, Belgium, pp 1–19

    Google Scholar 

  • Han BH, Suh EJ, Lee SY, Shin HK, Lim YP (2007) Selection of non-branching lines induced by introducing Ls-like cDNA into chrysanthemum (Dendranthema × grandiflorum (Ramat.) Kitamura) “Shuho-no-chikara”. Sci Hortic (Amsterdam) 115:70–75. doi:10.1016/j.scienta.2007.07.012

    Article  CAS  Google Scholar 

  • Klee HJ, Horsch RB, Hinchee MA, Hein MB, Hoffmann NL (1987) The effects of overproduction of two Agrobacterium tumefaciens T-DNA auxin biosynthetic gend products in transgenic petunia plants. Genes Dev 1:86–96. doi:10.1101/gad.1.1.86

    Article  CAS  Google Scholar 

  • Komatsu M, Maekawa M, Shimamoto K, Kyozuka J (2001) The LAX1 and FRIZZY PANICLE 2 genes determine the inflorescence architecture of rice by controlling rachis-branch and spikelet development. Dev Biol 231:364–373. doi:10.1006/dbio.2000.9988

    Article  CAS  PubMed  Google Scholar 

  • Li CJ, Bangerth F (1992) The possible role of cytokinins ethylene and idoleacetic acid in apical dominance. In: Karsssen CM, vanLoon LC, Vreugdenhil D (eds) Progress in plant growth regulation. Kluwer Academic, Dordrecht, pp 431–436

    Google Scholar 

  • Li X, Qian Q, Fu Z, Wang Y, Xiong G, Zeng D, Wang X, Liu X, Teng S, Hiroshi F, Yuan M, Luo D, Han B, Li J (2003) Control of tillering in rice. Nature 422:618–621. doi:10.1038/nature01518

    Article  CAS  PubMed  Google Scholar 

  • Morris DA (1977) Transport of exogenous auxin in two branched pea seedlings (Pisum sativum L.). Planta 136:91–96. doi:10.1007/BF00387930

    Article  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497. doi:10.1111/j.1399-3054.1962.tb08052.x

    Article  CAS  Google Scholar 

  • Napoli C (1996) Highly branched phenotype of the Petunia hybrida dadl-I mutant is reversed by grafting. Plant Physiol 111:27–37

    CAS  PubMed  Google Scholar 

  • Panigrahi BM, Audus L (1966) Apical dominance in Vicia faba. Ann Bot (Lond) 30:457–473

    Google Scholar 

  • Peng J, Carol P, Richards DE, King KE, Cowling RJ, Murphy GP, Harberd NP (1997) The Arabidopsis GAI gene defines a signaling pathway that negatively regulates gibberellin responses. Genes Dev 11:3194–3205. doi:10.1101/gad.11.23.3194

    Article  CAS  PubMed  Google Scholar 

  • Richards DE, King KE, Ait-ali T, Harberd NP (2001) How gibberellin regulates plant growth and development: a molecular genetic analysis of gibberellin signaling. Annu Rev Plant Physiol Plant Mol Biol 52:67–88. doi:10.1146/annurev.arplant.52.1.67

    Article  CAS  PubMed  Google Scholar 

  • Ritter MK, Padilla CM, Schmidt RJ (2002) The maize mutant barren stalk1 is defective in axillary meristem development. Am J Bot 89:203–210. doi:10.3732/ajb.89.2.203

    Article  Google Scholar 

  • Romano CP, Hein MB, Klee HJ (1991) Inactivation of auxin in tobacco transformed with the indoleacetic acid-lysine synthetase gene of Pseudomonas savastanoi. Genes Dev 5:438–446. doi:10.1101/gad.5.3.438

    Article  CAS  PubMed  Google Scholar 

  • Schmitz G, Tillmann E, Carriero F, Fiore C, Cellini F, Theres K (2002) The tomato Blind gene encodes a MYB transcription factor that controls the formation of lateral meristems. Proc Natl Acad Sci U S A 99:1064–1069. doi:10.1073/pnas.022516199

    Article  CAS  PubMed  Google Scholar 

  • Schumacher K, Schmitt T, Rossberg M, Schmitz G, Theres K (1999) The Lateral suppressor (Ls) gene of tomato encodes a new member of the VHIID protein family. Proc Natl Acad Sci U S A 96:290–295. doi:10.1073/pnas.96.1.290

    Article  CAS  PubMed  Google Scholar 

  • Shimizu S, Mori H (1998) Analysis of cycles of dormancy and growth in pea axillary buds based on mRNA accumulation patterns of cell cycle-related genes. Plant Cell Physiol 39(3):255–262

    CAS  PubMed  Google Scholar 

  • Silverstone AL, Ciampaglio CN, Sun TP (1998) The Arabidopsis RGA gene encodes a transcriptional regulator repressing the gibberellin signal transduction pathway. Plant Cell 10:155–169

    Article  CAS  PubMed  Google Scholar 

  • Snyder WE (1949) Some responses of plants to 2,3,5-triiodobenzoic acid. Plant Physiol 24:195–206. doi:10.1104/pp.24.2.195

    Article  CAS  PubMed  Google Scholar 

  • Stirnberg P, Chatfield SP, Leyser HMO (1999) AXR1 acts after lateral bud formation to inhibit lateral bud growth in Arabidopsis. Plant Physiol 121:839–847. doi:10.1104/pp.121.3.839

    Article  CAS  PubMed  Google Scholar 

  • Stirnberg P, Sande K, Leyser HMO (2002) MAX1 and MAX2 control shoot lateral branching in Arabidopsis. Development 129:1131–1141

    CAS  PubMed  Google Scholar 

  • Sussex IM (1955) Morphogenesis in Solanum tuberosum L: experimental investigation of leaf dorsiventrality and orientation in the juvenile shoot. Phytomorphology 5:286–300

    Google Scholar 

  • Tantikanjana T, Yong JWH, Letham DS, Griffith M, Hussain M, Ljung K, Sandberg G, Sundaresan V (2001) Control of axillary bud initiation and shoot architecture in Arabidopsis through the SUPERSHOOT gene. Genes Dev 15(12):1577–1588. doi:10.1101/gad.887301

    Article  CAS  PubMed  Google Scholar 

  • Thimann KV, Skoog F (1933) Studies in the growth hormone of plants. III. The inhibiting action of the growth substance on bud development. Proc Natl Acad Sci U S A 19:714–716. doi:10.1073/pnas.19.7.714

    Article  CAS  PubMed  Google Scholar 

  • Tucker DJ (1976) Endogenous growth regulators in relation to side shoot development in the tomato. New Phytol 77:561–568. doi:10.1111/j.1469-8137.1976.tb04647.x

    Article  CAS  Google Scholar 

  • Weising K, Atkinson RG, Gardner RC (1995) Genomic fingerprinting by microsatellite-primed PCR: a critical evaluation. PCR Methods Appl 4:249–255

    CAS  PubMed  Google Scholar 

  • Winkler RG, Freeling M (1994) Physiological genetics of the dominant gibberellin-nonresponsive maize dwarfs, Dwarf8 and Dwarf9. Planta 193:341–348. doi:10.1007/BF00201811

    Article  CAS  Google Scholar 

  • Yang DH, Yun PY, Park SY, Plaha P, Lee DS, Lee IS, Hwang YS, Kim YA, Lee J, Han BH, Lee SY, Shu EJ, Lim YP (2005) Cloning, characterization and expression of a Lateral suppressor-like gene from chrysanthemum (Dendranthema grandiflorum Kitamura). Plant Physiol Biochem 43:1044–1051. doi:10.1016/j.plaphy.2005.10.005

    Article  CAS  PubMed  Google Scholar 

  • Zhang SM, Chen SM, Chen FD, Teng NJ, Fang WM, Guan ZY (2008) Anatomical structure and gravitropic response of the creeping shoots of ground-cover chrysanthemum ‘Yuhuajinhua’. Plant Growth Regul 56:141–150. doi:10.1007/s10725-008-9295-2

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by the Program for New Century Excellent Talents in University, Ministry of Education of the People’s Republic of China (grant no. NCET-06-0489), Program of the Ministry of Science and Technology of the People’s Republic of China (grant no. 2006BAD01A1806), and 948 projects of the Ministry of Agriculture of People’s Republic of China (grant no. 2008-G3). We thank Prof. Wang Xiu’e (National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, China) for the provision of the pCAMBIA 1301-220 vector.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fadi Chen.

Additional information

B. Jiang and H. Miao contributed equally to this work reported here.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiang, B., Miao, H., Chen, S. et al. The Lateral Suppressor-Like Gene, DgLsL, Alternated the Axillary Branching in Transgenic Chrysanthemum (Chrysanthemum × morifolium) by Modulating IAA and GA Content. Plant Mol Biol Rep 28, 144–151 (2010). https://doi.org/10.1007/s11105-009-0130-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11105-009-0130-3

Keywords

Navigation