Skip to main content
Log in

The Tall Fescue Turf Grass Class I Chitinase Gene FaChit1 Is Activated by Fungal Elicitors, Dehydration, Ethylene, and Mechanical Wounding

  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

Abstract

The cDNA, genomic DNA, and promoter sequence of FaChit1, a class I chitinase gene from Festuca arundinacea, were isolated and characterized in the present work. The deduced amino acid sequence of FaChit1 contains the chitin binding, catalytic, and proline and glycine-rich domains characteristic for most class I chitinases, but no C-terminal extension region. FaChit1 is induced effectively by fungal elicitors, dehydration, and ethylene, but only slightly by mechanical wounding. To identify potential stress-related cis-acting elements, 5′ sequences 935, 651, and 233 bp upstream of the FaChit1 start codon were fused to the GUS reporter gene and analyzed in transgenic tobacco. The results indicated that the 935 bp fragment closely mirrored endogenous gene expression and that the 651 bp fragment was sufficient to direct reporter the gene expression in response to fungal elicitors, ethylene, dehydration, or mechanical wounding due to both known and presently uncharacterized cis-acting elements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

PCR:

Polymerase chain reaction

RACE:

Rapid amplification of cDNA end

MUG:

4-Methylumbellifery l-β-d-glucuronide

GUS:

β-Glucuronidase

References

  • Ancillo G, Hoegen E, Kombrink E (2003) The promoter of the potato chitinase C gene directs expression to epidermal cells. Planta 217:566–576. doi:10.1007/s00425-003-1029-0

    Article  PubMed  CAS  Google Scholar 

  • Beintema JJ (1994) Structural features of plant chitinases and chitin binding proteins. FEBS Lett 350:159–163. doi:10.1016/0014-5793(94)00753-5

    Article  PubMed  CAS  Google Scholar 

  • Bevan M (1984) Binary Agrobacterium vectors for plant transformation. Nucleic Acids Res 12:8711–8721. doi:10.1093/nar/12.22.8711

    Article  PubMed  CAS  Google Scholar 

  • Bradford MM (1976) A rapid sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. doi:10.1016/0003-2697(76)90527-3

    Article  PubMed  CAS  Google Scholar 

  • Bubier J, Schlappi M (2004) Cold induction of EARLI1, a putative Arabidopsis lipid transfer protein, is light and calcium dependent. Plant Cell Environ 27:929–936. doi:10.1111/j.1365-3040.2004.01198.x

    Article  CAS  Google Scholar 

  • Busk PK, Pages M (1998) Regulation of abscisic acid-induced transcription. Plant Mol Biol 37:425–435. doi:10.1023/A:1006058700720

    Article  PubMed  CAS  Google Scholar 

  • Chakravarthy S, Tuori RP, D’Ascenzo MD, Fobert PR (2003) The tomato transcription factor Pti4 regulates defense-related gene expression via GCC box and non-GCC box cis-elements. Plant Cell 15:3033–3050. doi:10.1105/tpc.017574

    Article  PubMed  CAS  Google Scholar 

  • Chen C, Chen Z (2002) Potentiation of developmentally regulated plant defense response by AtWRKY18, a pathogen-induced Arabidopsis transcription factor. Plant Physiol 129:706–716. doi:10.1104/pp.001057

    Article  PubMed  CAS  Google Scholar 

  • Chen WQ, Provart NJ, Glazebrook J (2002) Expression profile matrix of Arabidopsis transcription factor genes suggests their putative functions in response to environmental stresses. Plant Cell 14(3):559–574. doi:10.1105/tpc.010410

    Article  PubMed  CAS  Google Scholar 

  • Chinnusamy V, Schumaker K, Zhu JK (2004) Molecular genetic perspectives on cross-talk and specificity in abiotic stress signaling in plants. J Exp Bot 55:225–236. doi:10.1093/jxb/erh005

    Article  PubMed  CAS  Google Scholar 

  • Chujo T, Kato T, Yamada K, Takai R (2008) Characterization of an elicitor-induced rice WRKY gene, OsWRKY71. Biosci Biotechnol Biochem 72(1):24–25. doi:10.1271/bbb.70553

    Article  Google Scholar 

  • Dong J, Chen C, Chen Z (2003) Expression profiles of the Arabidopsis WRKY gene superfamily during plant defense response. Plant Mol Biol 51(1):21–37. doi:10.1023/A:1020780022549

    Article  PubMed  CAS  Google Scholar 

  • Eulgem T, Rushto PJ, Schmelzer E (1999) Early unclear events in plant defense signaling: Rapid gene activation by WRKY transcription factor. EMBO J 18(17):4689–4699. doi:10.1093/emboj/18.17.4689

    Article  PubMed  CAS  Google Scholar 

  • Fan J, Wang H, Feng D, Liu B, Liu H, Wang J (2007) Molecular characterization of plant in Class I chitinase gene and its expression in response to infection by Gloeosporium musarum Cke and Massee and other abiotic stimuli. J Biochem 142(5):561–570. doi:10.1093/jb/mvm171

    Article  PubMed  CAS  Google Scholar 

  • Fukamizo T (2000) Chitinolytic enzymes: catalysis, substrate binding, and their application. Curr Protein Pept Sci 1(1):105–1024. doi:10.2174/1389203003381450

    Article  PubMed  CAS  Google Scholar 

  • Glazebrook J (2001) Genes controlling expression of defense responses Arabidopsis 2001 status. Curr Opin Plant Biol 4:301–308. doi:10.1016/S1369-5266(00)00177-1

    Article  PubMed  CAS  Google Scholar 

  • Gomez L, Allona I, Casado R, Aragoncillo C (2002) Seed chitinases. Seed Sci Res 12:217–30. doi:10.1079/SSR2002113

    Article  CAS  Google Scholar 

  • Hahn M, Henning M (2000) Structure of Jack bean chitinase. Acta Crystallogr D Biol Crystallogr 56:1096–1099. doi:10.1107/S090744490000857X

    Article  PubMed  CAS  Google Scholar 

  • Hong JK, Hwang BK (2006) Promoter activation of pepper Class II basic chitinase gene, CAChi2, and enhanced bacterial disease resistance and osmotic stress tolerance in the CAChi2-overexpressing Arabidopsis. Planta 223:433–448. doi:10.1007/s00425-005-0099-6

    Article  PubMed  CAS  Google Scholar 

  • Huet J, Rucktooa P, Clantin B, Azarkan M, Looze Y, Villeret V, Wintjens R (2008) X-ray structure of papaya chitinase reveals the substrate binding mode of glycosyl hydrolase family 19 chitinases. Biochemisty 47(32):8283–91. doi:10.1021/bi800655u

    Article  CAS  Google Scholar 

  • Iseli B, Boller T, Neuhaus JM (1993) The N-terminal cysteine-rich domain of tobacco Class I chitinase is essential for chitin binding but not for catalytic or antifungal activity. Plant Physiol 103:221–226. doi:10.1104/pp.103.1.221

    Article  PubMed  CAS  Google Scholar 

  • Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: β-glucouronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 13:3901–3907

    Google Scholar 

  • Li WL, Faris JD, Chittoor JM, Leach JE, Liu DJ, Chen PD, Gill BS (1999) Genomic mapping of defense response genes in wheat. Theor Appl Genet 98:226–233. doi:10.1007/s001220051062

    Article  CAS  Google Scholar 

  • Li WL, Faris JD, Muthukrishnan S (2001) Isolation and characterization of novel cDNA clones of acidic chitinase and β-1, 3-glucanases from wheat spikes infected by Fusarium graminearum. Theor Appl Genet 102:353–362. doi:10.1007/s001220051653

    Article  CAS  Google Scholar 

  • Mei XG, Liu L, Yu LJ (2000) Enhanced paclitaxel production induced by the combination of elicitors in cell suspension cultures of Taxus chinensis. Biotechnol Lett 22:1561–1564. doi:10.1023/A:1005684901329

    Article  Google Scholar 

  • Nakano T, Nishiuchi T, Suzuki K, Fujimura T, Shinshi H (2006) Studies on transcriptional regulation of endogenous genes by ERF2 transcription factor in tobacco cells. Plant Cell Physiol 47(4):554–558. doi:10.1093/pcp/pcj017

    Article  PubMed  CAS  Google Scholar 

  • Nakashima K, Fujita Y, Katsura K et al (2006) Transcriptional regulation of ABI3- and ABA-responsive genes including RD29B and RD29A in seeds, germinating embryos, and seedlings of Arabidopsis. Plant Mol Biol 60:51–68. doi:10.1007/s11103-005-2418-5

    Article  PubMed  CAS  Google Scholar 

  • Onate-Sanchez L, Anderson JP, Young J (2007) AtERF14, a member of the ERF family of transcription factors, plays a nonredundant role in plant defence. Plant Physiol 143:400–409. doi:10.1104/pp.106.086637

    Article  PubMed  CAS  Google Scholar 

  • Park HC, Kim ML, Kang YH (2004) Pathogen- and NaCl-induced expression of the SCaM-4 promoter is mediated in part by a GT-1 Box that interacts with a GT-1-Like transcription factor. Plant Physiol 135(4):2150–2161. doi:10.1104/pp.104.041442

    Article  PubMed  CAS  Google Scholar 

  • Pirrello J, Jaimes-Miranda F, Sanchez-Ballesta MT (2006) S1-ERF2, a tomato ethylene response factor involved in ethylene response and seed germination. Plant Cell Physiol 47(9):1195–205. doi:10.1093/pcp/pcj084

    Article  PubMed  CAS  Google Scholar 

  • Richter TE, Ronald PC (2000) The evolution of disease resistance genes. Plant Mol Biol 42:195–204. doi:10.1023/A:1006388223475

    Article  PubMed  CAS  Google Scholar 

  • Rogers SG, Horsch RB, Fraley RT (1988) Gene transfer in plants: production of transformed plants using Ti plasmid vectors. In: Weissbach A, Weissbach H (eds) Methods for plant molecular biology. Academic, New York, pp 425–436

    Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular cloning, a laboratory manual. Cold Spring harbor Laboratory, Cold Spring Harbor

    Google Scholar 

  • Salzman RA, Brady JA, Finlayson SA (2005) Transcriptional profiling of sorghum induced by methyl jasmonate, salicylic acid, and aminocyclopropane carboxylic acid reveals cooperative regulation and novel gene responses. Plant Physiol 138:352–368. doi:10.1104/pp.104.058206

    Article  PubMed  CAS  Google Scholar 

  • Sawant SV, Kiran K, Mehrotra R et al (2005) A variety of synergistic and antagonistic interactions mediated by cis-acting DNA motifs regulate gene expression in plant cells and modulate stability of the transcription complex formed on a basal promoter. J Exp Bot 56(419):2345–53. doi:10.1093/jxb/eri227

    Article  PubMed  CAS  Google Scholar 

  • Shinshi H, Usami S, Ohme-Takagi M (1995) Identification of an ethylene responsive region in the promoter of a tobacco Class I chitinase gene. Plant Mol Biol 27:923–932. doi:10.1007/BF00037020

    Article  PubMed  CAS  Google Scholar 

  • Somssich IE, Hahlbrock K (1998) Pathogen defense in plants—a paradigm of biological complexity. Trends Plant Sci 3(3):86–90. doi:10.1016/S1360-1385(98)01199-6

    Article  Google Scholar 

  • Stewart CN Jr, Via LE (1993) A rapid CTAB DNA isolation technique useful for RAPD fingerprinting and other PCR application. Biotechniques 14:748–750

    PubMed  CAS  Google Scholar 

  • Takakura Y, Ito T, Saito H, Inoue T, Komari T, Kuwata S (2000) Flower-predominant expression of a gene encoding a novel Class I chitinase in rice (Oryza sativa L). Plant Mol Biol 42:883–897. doi:10.1023/A:1006401816145

    Article  PubMed  CAS  Google Scholar 

  • Tateishi Y, Umemura Y, Esaka M (2001) A basic Class I chitinase expression in winged bean is up-regulated by osmotic stress. Biosci Biotechnol Biochem 75(7):1663–168. doi:10.1271/bbb.65.1663

    Article  Google Scholar 

  • Thatcher LF, Anderson JP, Singh KB (2005) Plant defense response: what have we learnt from Arabidopsis. Funct Plant Biol 32:1–19. doi:10.1071/FP04135

    Article  CAS  Google Scholar 

  • Tran LS, Nakashima K, Sakuma Y, Simpson SD, Fujita Y, Maruyama K (2004) Isolation and functional analysis of Arabidopsis stress-inducible NAC transcription factors that bind to a drought-responsive cis-element in the early responsive to dehydration stress promoter. Plant Cell 16:2481–2498. doi:10.1105/tpc.104.022699

    Article  PubMed  CAS  Google Scholar 

  • Urao T, Yamaguchi-Shinozaki K, Urao S (1993) An Arabidopsis myb homolog is induced by dehydration stress and its gene product binds to the conserved MYB recognition sequence. Plant Cell 5:1529–1539

    Article  PubMed  CAS  Google Scholar 

  • Wu H, Michler CH, LaRussa L, Davis JM (1999) The pine Pschi4 promoter directs wound-induced transcription. Plant Sci 142:199–207. doi:10.1016/S0168-9452(99)00009-6

    Article  CAS  Google Scholar 

  • Xiao YH, Li XB, Yang XY (2007) Cloning and characterization of a Balsam pear Class I chitinase gene (Mcchit1) and its ectopic expression enhances fungal resistance in transgenic plants. Biosci Biotechnol Biochem 71(5):1211–1219. doi:10.1271/bbb.60658

    Article  PubMed  CAS  Google Scholar 

  • Xu X, Chen C, Fan B, Chen Z (2006) Physical and functional interactions between pathogen-induced Arabidopsis WRKY18, WRKY40, and WRKY60 transcription factors. Plant Cell 18:1310–1326. doi:10.1105/tpc.105.037523

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto S, Nakano T, Suzuki K, Shinshi H (2004) Elicitor-induced activation of transcription via W box-related cis-acting elements from a basic chitinase gene by WRKY transcription factors in tobacco. Biochim Biophys Acta 1679:279–287

    PubMed  CAS  Google Scholar 

  • Yang P, Wang Z, Fan B, Chen C, Chen Z (1999) A pathogen- and salicylic acid-induced WRKY DNA-binding activity recognizes the elicitor response element of the tobacco Class I chitinase gene. Plant J 18:141–149. doi:10.1046/j.1365-313X.1999.00437.x

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Zhi-feng Zhang (Fourth Military Medical University, Xi’an, Shaanxi, China) for help with the GUS assays. This study was supported by the National Natural Science Foundation of China (grant number 30870194), the Natural Science Foundation of Shaanxi Province (grant number 2006C103), the Research Project of Provincial Key Laboratory of Shaanxi (grant numbers 04JS07 and 08JZ70), and the Scientific Research Project of the Education Department of Shaanxi Province (Grant numbers: 05JK304 and 08JK466).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zi Qin Xu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table S1

Lists of primers used in different experiments (DOC 28.5 KB).

Fig. S1

Schematic representation of the FaChit1 promoter fragment and GUS fusion constructs used in transformation experiments. The length is calculated from the translation start code (+1) (DOC 27.5 KB).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, J., Tian, N., Huang, X. et al. The Tall Fescue Turf Grass Class I Chitinase Gene FaChit1 Is Activated by Fungal Elicitors, Dehydration, Ethylene, and Mechanical Wounding. Plant Mol Biol Rep 27, 305–314 (2009). https://doi.org/10.1007/s11105-008-0086-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11105-008-0086-8

Keywords

Navigation