Skip to main content
Log in

Promoter activation of pepper class II basic chitinase gene, CAChi2, and enhanced bacterial disease resistance and osmotic stress tolerance in the CAChi2-overexpressing Arabidopsis

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

The activation of the CAChi2 promoter as the result of bacterial infection and osmotic stresses was examined using the Agrobacterium-mediated transient expression assay. Several stress-related cis-acting elements were revealed within the upstream genomic sequence of the CAChi2 gene. In tobacco leaf tissues transiently transformed with the CAChi2 promoter-β-glucuronidase (GUS) gene, the CAChi2 promoter was up-regulated by Pseudomonas syringae pv. tabaci infection. The CAChi2-GUS activation was closely related to osmotic stresses, including treatment with mannitol and NaCl. The −378 CAChi2 promoter was sufficient for the CAChi2 gene induction by salicylic acid treatment. CAChi2 overexpression in the transgenic Arabidopsis plants enhanced bacterial disease resistance against Pseudomonas syringae pv. tomato infection. CAChi2-overexpressing Arabidopsis plants also exhibited increased tolerance to NaCl-induced osmotic stresses during seed germination and seedling growth. CAChi2 overexpression induced the expression of the NaCl stress-responsive gene RD29A in the absence of NaCl stress. The CAChi2-overexpressing transgenic plants exhibited increased sensitivity to abscisic acid during seed germination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

GUS:

β-Glucouronidase

PR:

Pathogenesis-related

SA:

Salicylic acid

References

  • Abe H, Urao T, Ito T, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003) Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. Plant Cell 15:63–78

    Article  PubMed  CAS  Google Scholar 

  • Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  PubMed  CAS  Google Scholar 

  • Ancillo G, Witte B, Schmelzer E, Kombrink E (1999) A distinct member of the basic (class I) chitinase gene family in potato is specifically expressed in epidermal cells. Plant Mol Biol 39:1137–1151

    Article  PubMed  CAS  Google Scholar 

  • Benhamou N, Broglie K, Chet I, Broglie R (1993) Cytology of infection of 35S-bean chitinase transgenic canola plants by Rhizoctonia solani: cytochemical aspects of chitin breakdown in vivo. Plant J 4:295–305

    Article  CAS  Google Scholar 

  • Boyle B, Brisson N (2001) Repression of the defense gene PR-10a by the single-stranded DNA binding protein SEBF. Plant Cell 13:2525–2537

    Article  PubMed  CAS  Google Scholar 

  • Bradford MM (1976) A rapid sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Broglie K, Chet I, Holliday M, Cressman R, Biddle P, Knowlton S, Mauvais J, Broglie R (1991) Transgenic plants with enhanced resistance to the fungal pathogen Rhizoctonia solani. Science 254:1194–1197

    Article  PubMed  CAS  Google Scholar 

  • Chen RD, Yu LX, Greer AF, Cheriti H, Tabaeizadeh Z (1994) Isolation of an osmotic stress- and abscisic acid-induced gene encoding an acidic endochitinase from Lycopersicon chilense. Mol Gen Genet 245:195–202

    Article  PubMed  CAS  Google Scholar 

  • Chomczynski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidium thiocyanate-phenol-chloroform extraction. Anal Biochem 162:156–159

    Article  PubMed  CAS  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  PubMed  CAS  Google Scholar 

  • Daugrois JH, Lafiette C, Barthe JP, Touze A (1990) Induction of β-1,3-glucanase and chitinase activity in compatible and incompatible interactions between Colletotrichum linthemuthianum and bean cultivars. J Phytopathol 130:225–234

    CAS  Google Scholar 

  • De Jong A, Cordewener J, Schiavo FL, Terzi M, Vandekerckhove J, Van Kammen A, De Vries SC (1992) A carrot somatic embryo mutant is rescued by chitinase. Plant Cell 4:425–433

    Article  PubMed  CAS  Google Scholar 

  • Dempsey DA, Shah J, Klessig D (1999) Salicylic acid and disease resistance in plants. Crit Rev Plant Sci 18:547–575

    Article  CAS  Google Scholar 

  • Després C, Subramaniam R, Matton DP, Brisson N (1995) The activation of the potato PR-10a gene requires the phosphorylation of the nuclear factor PBF-1. Plant Cell 7:589–598

    Article  PubMed  Google Scholar 

  • Dunn MA, White AJ, Vural S, Hughes MA (1998) Identification of promoter elements in a low-temperature-responsive gene (blt4.9) from barley (Hordeum vulgare L.). Plant Mol Biol 38:551–564

    Article  PubMed  CAS  Google Scholar 

  • Ernst D, Schraudner M, Langebartels C, Sandermann H Jr (1992) Ozone-induced changes of mRNA levels of β-1,3-glucanase, chitinase and ‘pathogenesis-related’ protein 1b in tobacco plants. Plant Mol Biol 20:673–682

    Article  PubMed  CAS  Google Scholar 

  • Eulgem T, Rushton PJ, Robatzek S, Somssich IE (2000) The WRKY superfamily of plant transcription factors. Trends Plant Sci 5:199–206

    Article  PubMed  CAS  Google Scholar 

  • Finkelstein RR, Gampala SSL, Rock CD (2002) Abscisic acid signaling in seeds and seedlings. Plant Cell S15-S45

  • Higo K, Ugawa Y, Iwamoto M, Korenaga T (1999) Plant cis-acting regulatory DNA elements (PLACE) database. Nucleic Acids Res 27:297–300

    Article  PubMed  CAS  Google Scholar 

  • Hong JK, Hwang BK (2002) Induction by pathogen, salt and drought of a basic class II chitinase mRNA and its in situ localization in pepper (Capsicum annuum). Physiol Plant 114:549–558

    Article  PubMed  CAS  Google Scholar 

  • Hong JK, Jung HW, Kim YJ, Hwang BK (2000) Pepper gene encoding a basic class II chitinase is inducible by pathogen and ethephon. Plant Sci 159:39–49

    Article  PubMed  CAS  Google Scholar 

  • Ishitani M, Xiong L, Lee H, Stevenson B, Zhu JK (1998) HOS1, a genetic locus involved in cold-responsive gene expression in Arabidopsis. Plant Cell 10:1151–1161

    Article  PubMed  CAS  Google Scholar 

  • Itzhaki H, Maxson JM, Woodson WR (1994) An ethylene-responsive enhancer element is involved in the senescence-related expression of the carnation glutathione-S-transferase (GSTI) gene. Proc Natl Acad Sci USA 91:8925–8929

    Article  PubMed  CAS  Google Scholar 

  • Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: β-glucouronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 13:3901–3907

    Google Scholar 

  • Kagaya Y, Ohmiya K, Hattori T (1999a) RAV1, a novel DNA-binding protein, binds to bipartite recognition sequence through two distinct DNA-binding domains uniquely found in higher plants. Nucleic Acids Res 27:470–478

    Article  CAS  Google Scholar 

  • Kagaya Y, Ohmiya K, Jattori T (1999b) RAV1, a novel DNA-binding protein, binds top bipartite recognition sequence through two distinct DNA-binding domains uniquely found in higher plants. Nucleic Acids Res 27:470–478

    Article  CAS  Google Scholar 

  • Kellmann JW, Kleinow T, Engelhardt K, Philipp C, Wegener D, Schell J, Schreier PH (1996) Characterization of two class II chitinase genes from peanut and expression studies in transgenic tobacco plants. Plant Mol Biol 30:351–358

    Article  PubMed  CAS  Google Scholar 

  • Kim CY, Gal SW, Choe MS, Jeong SY, Lee SI, Cheong YH, Lee SH, Choi YJ, Han C, Kang KY, Cho MJ (1998) A new class II rice chitinase, Rcht2, whose induction by fungal elicitor is abolished by protein phosphatase 1 and 2A inhibitor. Plant Mol Biol 37:523–534

    Article  PubMed  CAS  Google Scholar 

  • Kim SH, Hong JK, Lee SC, Sohn KH, Jung HW, Hwang BK (2004) CAZFP1, Cys2/His2-type zinc-finger transcription factor gene functions as a pathogen-induced early-defense gene in Capsicum annuum. Plant Mol Biol 55:883–904

    PubMed  CAS  Google Scholar 

  • King EO, Ward MK, Raney DE (1954) Two simple media for the demonstration of phycocyanin and fluorescin. J Lab Clin Med 44:301–307

    PubMed  CAS  Google Scholar 

  • Lee YK, Hippe-Sanwald S, Jung HW, Hong JK, Hause B, Hwang BK (2000) In situ localization of chitinase mRNA and protein in compatible and incompatible interactions of pepper stems with Phytophthora capsici. Physiol Mol Plant Pathol 57:111–121

    Article  CAS  Google Scholar 

  • Lichtenthaler HK (1987) Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods Enzymol 148:350–382

    CAS  Google Scholar 

  • Matton DP, Prescott G, Bertrand C, Camirand A, Brisson N (1993) Identification of cis-acting elements involved in the regulation of the pathogenesis-related gene STH-2 in potato. Plant Mol Biol 22:279–291

    Article  PubMed  CAS  Google Scholar 

  • Métraux JP, Streit L, Staub T (1988) A pathogenesis-related protein in cucumber is a chitinase. Physiol Mol Plant Pathol 33:1–9

    Article  Google Scholar 

  • Meuwly P, Mölders W, Buchala A, Métraux JP (1995) Local and systemic biosynthesis of salicylic acid in infected cucumber plants. Plant Physiol 109:1107–1114

    PubMed  CAS  Google Scholar 

  • Montgomery J, Goldman S, Deikman J, Margossian L, Fischer RL (1993) Identification of an ethylene-responsive region in the promoter of a fruit ripening gene. Proc Natl Acad Sci USA 90:5939–5943

    Article  PubMed  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Nielsen KK, Mikkelsen JD, Kragh KM, Bojsen K (1993) An acidic class III chitinase in sugar beet: Induction by Cercospora beticola, characterization, and expression in transgenic tobacco plants. Mol Plant Microb Interact 6:495–506

    CAS  Google Scholar 

  • Oñate-Sánchez L, Singh KB (2002) Identification of Arabidopsis ethylene-responsive element binding factors with distinct induction kinetics after pathogen infection. Plant Physiol 128:1313–1322

    Article  PubMed  CAS  Google Scholar 

  • Ohme-Takagi M, Shinshi M (1995) Ethylene-inducible DNA binding proteins that interact with an ethylene-responsive element. Plant Cell 7:173–182

    Article  PubMed  CAS  Google Scholar 

  • Ohta M, Ohme-Takagi M, Shinshi H (2000) Three ethylene-responsive transcription factors in tobacco with distinct transactivation functions. Plant J 22:29–38

    Article  PubMed  CAS  Google Scholar 

  • Peumans WJ, Proost P, Swennen RL, Van Damme EJM (2002) The abundant class III chitinase homolog in young developing banana fruits behaves a transient vegetative storage protein and most probably serves as an important supply of amino acids for the synthesis of ripening-associated proteins. Plant Physiol 130:1063–1072

    Article  PubMed  CAS  Google Scholar 

  • Piao HL, Lim JH, Kim SJ, Cheong GW, Hwang I (2001) Constitutive over-expression of AtGSK1 induces NaCl stress responses in the absence of NaCl stress and results in enhanced NaCl tolerance in Arabidopsis. Plant J 27:305–314

    Article  PubMed  CAS  Google Scholar 

  • Punja ZK, Zhang YY (1993) Plant chitinases and their roles in resistance to fungal diseases. J Nematol 25:526–540

    CAS  PubMed  Google Scholar 

  • Rathjen JP, Chang JH, Staskawicz BJ, Michelmore RW (1999) Constitutively active Pto induced a Prf-defendant hypersensitive response in the absence of avrPto. EMBO J 18:3232–3240

    Article  PubMed  CAS  Google Scholar 

  • Roby D, Gadelle A, Toppan A (1987) Chitin oligosaccharides as elicitors of chitinase activity in melon plants. Biochem Biophys Res Commun 143:885–892

    Article  PubMed  CAS  Google Scholar 

  • Sakamoto H, Maruyama K, Sakuma Y, Meshi T, Iwabuchi M, Shinozaki K, Yamaguchi-Shinozaki K (2004) Arabidopsis Cys2/His2-type zinc-finger proteins function as transcription repressors under drought, cold, and high-salinity stress conditions. Plant Physiol 136:2734–2746

    Article  PubMed  CAS  Google Scholar 

  • Salzman RA, Tikhonova I, Bordelon BP, Hasegawa PM, Bressan RA (1998) Coordinate accumulation of antifungal proteins and hexoses constitutes a developmentally controlled defense response during fruit ripening in grape. Plant Physiol 117:465–472

    Article  PubMed  CAS  Google Scholar 

  • Samac DA, Shah DM (1991) Developmental and pathogen-induced activation of the Arabidopsis acidic chitinase promoter. Plant Cell 3:1063–1072

    Article  PubMed  CAS  Google Scholar 

  • Sela-Buurlage MB, Ponstein AS, Bres-Vloemans SA, Melchers LS, Van den Elzen PJM, Cornelissen BJC (1993) Only specific tobacco (Nicotiana tabacum) chitinases and β-1,3-glucanases exhibit antifungal activity. Plant Physiol 101:857–863

    PubMed  CAS  Google Scholar 

  • Senaratna T, Touchell D, Bunn E, Dixon K (2000) Acetyl salicylic acid (Aspirin) and salicylic acid induce multiple stress tolerance in bean and tomato plants. Plant Growth Regul 30:157–161

    Article  CAS  Google Scholar 

  • Seskar M, Shulaev V, Raskin I (1998) Endogenous methyl salicylate in pathogen-inoculated tobacco plants. Plant Physiol 116:387–392

    Article  CAS  Google Scholar 

  • Shinshi H, Usami S, Ohme-Takagi M (1995) Identification of an ethylene-responsive region in the promoter of a tobacco class I chitinase gene. Plant Mol Biol 27:923–932

    Article  PubMed  CAS  Google Scholar 

  • Takatsuji H, Matsumoto T (1996) Target-sequence recognition by separate-type Cys2/His2 zinc finger proteins in plants. J Biol Chem 271:23368–23373

    Article  PubMed  CAS  Google Scholar 

  • Tateishi Y, Umemura Y, Esaka M (2001) A basic class I chitinase expressing in winged bean is up-regulated by osmotic stress. Biosci Biotechnol Biochem 65:1663–1668

    Article  PubMed  CAS  Google Scholar 

  • Urao T, Yamaguchi-Shinozaki K, Urao S, Shinozaki K (1993) An Arabidopsis myb homolog is induced by dehydration stress and its gene product binds to the conserved MYB recognition sequence. Plant Cell 5:1529–1539

    Article  PubMed  CAS  Google Scholar 

  • Van Buuren M, Neuhaus JM, Shinshi H, Ryals J, Meins JrF (1992) The structure and regulation of homeologous tobacco endochitinase genes from Nicotiana sylvestris and N. tomentosiformis origin. Mol Gen Genet 232:460–469

    Article  PubMed  CAS  Google Scholar 

  • Van Loon LC, Van Strien EA (1999) The families of pathogenesis-related proteins, their activities, and comparative analysis of PR-1 type proteins. Physiol Mol Plant Pathol 55:85–97

    Article  CAS  Google Scholar 

  • Wu H, Michler CH, LaRussa L, Davis JM (1999) The pine Pschi4 promoter directs wound-induced transcription. Plant Sci 142:199–207

    Article  CAS  Google Scholar 

  • Wubben JP, Joosten MHAJ, Van Kan JAL, De Wit PJGM (1992) Subcellular localization of plant chitinase and 1,3-β-glucanases in Cladosporium fulvum (syn. Fulvia fulva)-infected tomato leaves. Physiol Mol Plant Pathol 41:23–32

    Article  CAS  Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K (1993) Characterization of the expression of a desiccation-responsive rd29a gene of Arabidopsis thaliana and analysis of its promoter in transgenic plants. Mol Gen Genet 236:331–340

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K (1994) A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress. Plant Cell 6:251–264

    Article  PubMed  CAS  Google Scholar 

  • Yang P, Chen C, Wang Z, Fan B, Chen Z (1999) A pathogen- and salicylic acid-induced WRKY DNA-binding activity recognizes the elicitor response element of the tobacco class I chitinase gene promoter. Plant J 18:141–149

    Article  CAS  Google Scholar 

  • Yang Y, Li R, Qi M (2000) In vivo analysis of plant promoters and transcription factors by agroinfiltration of tobacco leaves. Plant J 22:543–551

    Article  PubMed  CAS  Google Scholar 

  • Zhou DX (1999) Regulatory mechanism of plant gene transcription by GT-elements and GT-factors. Trends Plant Sci 4:210–214

    Article  PubMed  Google Scholar 

  • Zhu Q, Doerner PW, Lamb CJ (1993) Stress induction and developmental regulation of a rice chitinase promoter in transgenic tobacco. Plant J 3:203–212

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by a grant (301012–5) from the Agricultural R& D Promotion Center, the Korea Ministry of Agriculture and Forestry, a grant (CG1432) from the Crop Functional Genomics Center of the 21st Century Frontier Research Program funded by the Ministry of Science and Technology of the Republic of Korea and a grant from the Center for Plant Molecular Genetics and Breeding Research, Seoul National University, Seoul, Korea. We thank Dr. Stuart Timmis for critically reviewing of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Byung Kook Hwang.

Additional information

The nucleotide sequence data reported here has been deposited in the GenBank database under the accession number AY775335.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hong, J.K., Hwang, B.K. Promoter activation of pepper class II basic chitinase gene, CAChi2, and enhanced bacterial disease resistance and osmotic stress tolerance in the CAChi2-overexpressing Arabidopsis . Planta 223, 433–448 (2006). https://doi.org/10.1007/s00425-005-0099-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-005-0099-6

Keywords

Navigation