Skip to main content
Log in

Genome-wide Comparisons of Gene Expression for Yield Heterosis in Maize

  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

Abstract

Although heterosis is widely used in conventional plant breeding, its genetic mechanism has not been well understood at the molecular level. In this study, we identified a highly heterotic hybrid (C8605-2 × W1445) and a low heterotic hybrid (C8605-2 × W245) for yield performance in maize from 33 hybrids obtained from an incomplete diallel mating scheme. Using high-density maize oligomicroarrays, we analyzed and compared gene expression profiles of the highly heterotic hybrid, its parent lines, and the low heterotic hybrid. A total of 2,366 differentially expressed genes were identified in C8605-2 × W1445 and its two parents. These genes exhibited heterogeneous expression patterns in the hybrid relative to its parents, and covering additivity, high-parent dominance, low-parent dominance, overdominance, underdominance, and partial-dominance. The functions of several genes fell in diverse biological processes, including metabolism, signal transduction, transport, biological regulation, and development, among others. Notably, among those highly upregulated genes in the hybrid, there were genes known to play vital roles in stress tolerance and yield enhancement and groups of transcriptional factors that might contribute to overall enhanced quality of the hybrid. Further comparisons between high- and the low-heterotic hybrids also revealed a subset of differentially expressed genes. Together, this genome-wide comparison among maize lines exhibiting varying degrees of heterosis, during the early developmental phase of immature ears, will provide valuable information for further studies on linkage between specific gene expression and phenotype of heterosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aharoni A, Vorst O. DNA microarrays for functional plant genomics. Plant Mol Biol. 2001;48:99–118. doi:10.1023/A:1013734019946.

    Article  Google Scholar 

  • Auger DL, Gray AD, Ream TS, Kato A, Coe EH Jr, Birchler JA. Nonadditive gene expression in diploid and triploid hybrids of maize. Genetics. 2005;169:389–97. doi:10.1534/genetics.104.032987.

    Article  PubMed  CAS  Google Scholar 

  • Bao J, Lee S, Chen C, Zhang X, Zhang Y, Liu S, Clark T, Wang J, Cao M, Yang H, Wang SM, Yu J. Serial analysis of gene expression study of a hybrid rice strain (LYP9) and its al cultivars. Plant Physiol. 2005;138:1216–31. doi:10.1104/pp.105.060988.

    Article  PubMed  CAS  Google Scholar 

  • Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B Stat Methodol. 1995;57:289–300.

    Google Scholar 

  • Birchler JA, Auger DL, Riddle NC. In search of the molecular basis of heterosis. Plant Cell. 2003;15:2236–9. doi:10.1105/tpc.151030.

    Article  PubMed  CAS  Google Scholar 

  • Cho Y, Fernandes J, Kim SH, Walbot V. Gene-expression profile comparisons distinguish seven organs of maize. Genome Biol 2002;3:research0045.1–0045.16.

    Article  Google Scholar 

  • Churchill GA. Fundamentals of experimental design for cDNA microarrays. Nat Genet. 2002;32(Suppl):490–5. doi:10.1038/ng1031.

    Article  PubMed  CAS  Google Scholar 

  • Cui X, Churchill GA. Statistical tests for differential expression in cDNA microarray experiments. Genome Biol. 2003;4:210. doi:10.1186/gb-2003-4-4-210.

    Article  PubMed  Google Scholar 

  • Davenport CB. Degeneration, albinism and inbreeding. Science. 1908;28:454–5. doi:10.1126/science.28.718.454-b.

    Article  PubMed  Google Scholar 

  • De Bodt S, Raes J, Van de Peer Y, Theißen G. And then there were many: MADS goes genomic.. Trends Plant Sci. 2003;18:475–83. doi:10.1016/j.tplants.2003.09.006.

    Article  Google Scholar 

  • Diaz I, Vicente-Carbajosa J, Abraham Z, Martínez M, Isabel-LaMoneda I, Carbonero P. The GAMYB protein from barley interacts with the DOF transcription factor BPBF and activates endosperm-specific genes during seed development. Plant J. 2002;29:453–64. doi:10.1046/j.0960-7412.2001.01230.x.

    Article  PubMed  CAS  Google Scholar 

  • East EM (1908) Inbreeding in corn. In: Report of the Connecticut Agricultural Experiment Station for years 1907–1908, pp 419–428.

  • Fuchs I, Philippar K, Ljung K, Sandberg G, Hedrich R. Blue light regulates an auxin-induced K+-channel gene in the maize coleoptile. Proc Natl Acad Sci USA 2003;100:11795–800. doi:10.1073/pnas.2032704100.

    Article  PubMed  CAS  Google Scholar 

  • Gibson G, Riley-Berger R, Harshman L, Kopp A, Vacha S, Nuzhdin S, Wayne M. Extensive sex-specific non-additivity of gene expression in Drosophila melanogaster. Genetics. 2004;167:1791–9. doi:10.1534/genetics.104.026583.

    Article  PubMed  CAS  Google Scholar 

  • Grimanelli D, Perotti E, Ramirez J, Leblanc O. Timing of the maternal-to-zygotic transition during early seed development in maize. Plant Cell. 2005;17:1061–72. doi:10.1105/tpc.104.029819.

    Article  PubMed  CAS  Google Scholar 

  • Guo M, Rupe MA, Yang X, Crasta O, Zinselmeier C, Smith OS, Bowen B. Genome-wide transcript analysis of maize hybrids: allelic additive gene expression and yield heterosis. Theor Appl Genet. 2006;113:831–45. doi:10.1007/s00122-006-0335-x.

    Article  PubMed  CAS  Google Scholar 

  • Hedgecock D, Lin JZ, DeCola S, Haudenschild CD, Meyer E, Manahan DT, Bowen B. Transcriptomic analysis of growth heterosis in larval Pacific oysters (Crassostrea gigas). Proc Natl Acad Sci USA. 2007;104:2313–8. doi:10.1073/pnas.0610880104.

    Article  PubMed  CAS  Google Scholar 

  • Hoecker N, Lamkemeyer T, Sarholz B, Paschold A, Fladerer C, Madlung J, Wurster K, Stahl M, Piepho H, Nordheim A, Hochholdinger F. Analysis of nonadditive protein accumulation in young primary roots of a maize (Zea mays L.) F1-hybrid compared to its parental inbred lines. Proteomics 2008;8:3882–984. doi:10.1002/pmic.200800023.

    Article  PubMed  CAS  Google Scholar 

  • Hua J, Xing Y, Wu W, Xu C, Sun X, Yu S, Zhang Q. Single-locus heterotic effects and dominance by dominance interactions can adequately explain the genetic basis of heterosis in an elite rice hybrid. Proc Natl Acad Sci USA. 2003;100:2574–9. doi:10.1073/pnas.0437907100.

    Article  PubMed  CAS  Google Scholar 

  • Huang Y, Zhang L, Zhang J, Yuan D, Xu C, Li X, Zhou D, Wang S, Zhang Q. Heterosis and polymorphisms of gene expression in an elite rice hybrid as revealed by a microarray analysis of 9198 unique ESTs. Plant Mol Biol. 2006;62:579–91. doi:10.1007/s11103-006-9040-z.

    Article  PubMed  CAS  Google Scholar 

  • Ju C, Zhang F, Gao Y, Zhang W, Yan J, Dai J, Li J. Cloning, chromosome mapping and expression analysis of an R2R3-MYB gene under-expressed in maize hybrid. Mol Biol Rep. 2006;33:103–10. doi:10.1007/s11033-006-0016-5.

    Article  PubMed  CAS  Google Scholar 

  • Kakani VG, Reddy KR, Zhao D, Sailaja K. Field crop responses to ultraviolet-B radiation: a review. Agric For Meteorol. 2003;120:191–218. doi:10.1016/j.agrformet.2003.08.015.

    Article  Google Scholar 

  • Lai Z, Gross BL, Zou Y, Andrews J, Rieseberg LH. Microarray analysis reveals differential gene expression in hybrid sunflower species. Mol Ecol. 2006;15:1213–27. doi:10.1111/j.1365-294X.2006.02775.x.

    Article  PubMed  CAS  Google Scholar 

  • Lee JM, Williams ME, Tingey SV, Rafalski JA. DNA array profiling of gene expression changes during maize embryo development. Funct Integr Genomics. 2002;2:13–27. doi:10.1007/s10142-002-0046-6.

    Article  PubMed  CAS  Google Scholar 

  • Leonardi A, Damerval C, Hébert Y, Gallais A, de Vienne D. Association of protein amount polymorphisms (PAP) among maize lines with performances of their hybrids. Theor Appl Genet. 1991;82:552–60. doi:10.1007/BF00226790.

    Article  CAS  Google Scholar 

  • Liu Q, Kasuga M, Sakuma Y, Abe H, Miura S, Yamaguchi-Shinozaki K, Shinozaki K. Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell. 1998;10:1391–406.

    Article  PubMed  CAS  Google Scholar 

  • Ma J, Morrow DJ, Fernandes J, Walbot V. Comparative profiling of the sense and antisense transcriptome of maize lines. Genome Biol. 2006;7:R22. doi:10.1186/gb-2006-7-3-r22.

    Article  PubMed  Google Scholar 

  • Meyer S, Pospisil H, Scholten S. Heterosis associated gene expression in maize embryos 6 days after fertilization exhibits additive, dominant and overdominant pattern. Plant Mol Biol. 2007;63:381–91. doi:10.1007/s11103-006-9095-x.

    Article  PubMed  CAS  Google Scholar 

  • Park JM, Park CJ, Lee SB, Ham BK, Shin R, Paek KH. Overexpression of the tobacco Tsi1 gene encoding an EREBP/AP2-type transcription factor enhances resistance against pathogen attack and osmotic stress in tobacco. Plant Cell. 2001;13:1035–46.

    Article  PubMed  CAS  Google Scholar 

  • Pea G, Ferron S, Gianfranceschi L, Krajewski P, Pè ME. Gene expression non-additivity in immature ears of a heterotic F1 maize hybrid. Plant Sci. 2008;174:17–24. doi:10.1016/j.plantsci.2007.09.005.

    Article  CAS  Google Scholar 

  • Qu LJ, Zhu YX. Transcription factor families in Arabidopsis: major progress and outstanding issues for future research. Curr Opin Plant Biol. 2006;9:544–9. doi:10.1016/j.pbi.2006.07.005.

    Article  PubMed  CAS  Google Scholar 

  • Rabinowicz PD, Braun EL, Wolfe AD, Bowen B, Grotewold E. Maize R2R3 Myb genes: sequence analysis reveals amplification in the higher plants. Genetics. 1999;153:427–44.

    PubMed  CAS  Google Scholar 

  • Romagnoli S, Maddaloni M, Livini C, Motto M. Relationship between gene expression and hybrid vigor in primary root tips of young maize (Zea mays L.) plantlets. Theor Appl Genet. 1990;80:769–75. doi:10.1007/BF00224190.

    Article  CAS  Google Scholar 

  • Sang Y, Zheng S, Li W, Huang B, Wang X. Regulation of plant water loss by manipulating the expression of phospholipase Dα. Plant J. 2001;28:135–44. doi:10.1046/j.1365-313X.2001.01138.x.

    Article  PubMed  CAS  Google Scholar 

  • Sawers RJH, Liu P, Anufrikova K, Hwang JTG, Brutnell TP. A multi-treatment experimental system to examine photosynthetic differentiation in the maize leaf. BMC Genomics. 2007;8:12. doi:10.1186/1471-2164-8-12.

    Article  PubMed  Google Scholar 

  • Song R, Messing J. Gene expression of a gene family in maize based on non-collinear haplotypes. Proc Natl Acad Sci USA. 2003;100:9055–60. doi:10.1073/pnas.1032999100.

    Article  PubMed  CAS  Google Scholar 

  • Springer NM, Stupar RM. Allelic variation and heterosis in maize: how do two halves make more than a whole? Genome Res. 2007;17:264–75. doi:10.1101/gr.5347007.

    Article  PubMed  CAS  Google Scholar 

  • Stuber CW, Lincoln SE, Wolff DW, Helentjaris T, Lander ES. Identification of genetic factors contributing to heterosis in a hybrid from two elite maize inbred lines using molecular markers. Genetics. 1992;132:823–39.

    PubMed  CAS  Google Scholar 

  • Stupar RM, Springer NM. Cis-transcriptional variation in maize inbred lines B73 and Mo17 leads to additive expression patterns in the F1 hybrid. Genetics. 2006;173:2199–210. doi:10.1534/genetics.106.060699.

    Article  PubMed  CAS  Google Scholar 

  • Stupar RM, Gardiner JM, Oldre AG, Haun WJ, Chandler VL, Springer NM. Gene expression analyses in maize inbreds and hybrids with varying levels of heterosis. BMC Plant Biol. 2008;8:33. doi:10.1186/1471-2229-8-33.

    Article  PubMed  Google Scholar 

  • Swanson-Wagner RA, Jia Y, DeCook R, Borsuk LA, Nettleton D, Schnable PS. All possible modes of gene action are observed in a global comparison of gene expression in a maize F1 hybrid and its inbreds. Proc Natl Acad Sci USA. 2006;103:6805–10. doi:10.1073/pnas.0510430103.

    Article  PubMed  CAS  Google Scholar 

  • Tollenaar M, Wu J. Yield improvement in temperate maize is attributable to greater stress tolerance. Crop Sci. 1999;39:1597–604.

    Google Scholar 

  • Uzarowska A, Keller B, Piepho HP, Schwarz G, Ingvardsen C, Wenzel G, Lubberstedt T. Comparative expression profiling in meristems of inbred-hybrid triplets of maize based on morphological investigations of heterosis for plant height. Plant Mol Biol. 2007;63:21–34. doi:10.1007/s11103-006-9069-z.

    Article  PubMed  CAS  Google Scholar 

  • Vroh Bi I, McMullen MD, Sanchez-Villeda H, Schroeder S, Gardiner J, Polacco M, Soderlund C, Wing R, Fang Z, Coe Jr EH. Single nucleotide polymorphisms and insertion-deletions for genetic markers and anchoring the maize fingerprint contig physical map. Crop Sci. 2006;46:12–21. doi:10.2135/cropsci2004.0706.

    Article  Google Scholar 

  • Vuylsteke M, van Eeuwijk F, van Hummelen P, Kuiper M, Zabeau M. Genetic analysis of variation in gene expression in Arabidopsis thaliana. Genetics. 2005;171:1267–75. doi:10.1534/genetics.105.041509.

    Article  PubMed  CAS  Google Scholar 

  • Wang X. Phospholipase D in hormonal and stress signaling. Curr Opin Plant Biol. 2002;5:408–14. doi:10.1016/S1369-5266(02)00283-2.

    Article  PubMed  CAS  Google Scholar 

  • Wang H, Miyazaki S, Kawai K, Deyholos M, Galbraith DW, Bohnert HJ. Temporal progression of gene expression responses to salt shock in maize roots. Plant Mol Biol. 2003;52:873–91. doi:10.1023/A:1025029026375.

    Article  PubMed  CAS  Google Scholar 

  • Wang Z, Ni Z, Wu H, Nie X, Sun Q. Heterosis in root development and differential gene expression between hybrids and their al inbreds in wheat (Triticum aestivum L.). Theor Appl Genet. 2006;113:1283–94. doi:10.1007/s00122-006-0382-3.

    Article  PubMed  CAS  Google Scholar 

  • Wu H, Kerr K, Cui X, Churchill GA. MAANOVA: A software package for the analysis of spotted cDNA microarray experiments. In: Parmigiani G, Garett ES, Irizarry RA, Zeger SL, editors. The analysis of gene expression data: methods and software. New York: Springer; 2003. p. 313–41.

    Chapter  Google Scholar 

  • Xiao J, Li J, Yuan L, Tanksley SD. Dominance is the major genetic basis of heterosis in rice as revealed by QTL analysis using molecular markers. Genetics. 1995;140:745–54.

    PubMed  CAS  Google Scholar 

  • Xiong LZ, Yang GP, Xu CG, Zhang Q, Saghai Maroof MA. Relationships of differential gene expression in leaves with heterosis and heterozygosity in a rice diallel cross. Mol Breed. 1998;4:129–36. doi:10.1023/A:1009685820649.

    Article  CAS  Google Scholar 

  • Yao Y, Ni Z, Zhang Y, Chen Y, Ding Y, Han Z, Liu Z, Sun Q. Identification of differentially expressed genes in leaf and root between wheat hybrid and its al inbreds using PCR-based cDNA subtraction. Plant Mol Biol. 2005;58:367–84. doi:10.1007/s11103-005-5102-x.

    Article  PubMed  CAS  Google Scholar 

  • Young SA, Wang X, Leach JE. Changes in the plasma membrane distribution of rice phospholipase D during resistant interactions with Xanthomonas oryzae pv oryzae. Plant Cell. 1996;8:1079–90.

    Article  PubMed  CAS  Google Scholar 

  • Yu LX, Setter TL. Comparative transcriptional profiling of placenta and endosperm in developing maize kernels in response to water deficit. Plant Physiol. 2003;131:568–82. doi:10.1104/pp.014365.

    Article  PubMed  CAS  Google Scholar 

  • Zhao T, Ni Z, Dai Y, Yao Y, Nie X, Sun Q. Characterization and expression of 42 MADS-box genes in wheat (Triticum aestivum L.). Mol Genet Genomics. 2006;276:334–50. doi:10.1007/s00438-006-0147-3.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shou-Cai Wang.

Additional information

This work was supported by Key Project of Chinese National Programs for Fundamental Research and Development (2007CB109003).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, B., Zhang, DF., Jia, GQ. et al. Genome-wide Comparisons of Gene Expression for Yield Heterosis in Maize. Plant Mol Biol Rep 27, 162–176 (2009). https://doi.org/10.1007/s11105-008-0068-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11105-008-0068-x

Keywords

Navigation