Skip to main content
Log in

Trophic group specific responses of alpine nematode communities to 18 years of N addition and codominant plant removal

  • Research Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background and Aims

Human-driven nitrogen (N) deposition can alter soil biogeochemistry and plant communities, both critical to soil biota. However, understanding the relative impact of the relationship between nutrient resources and plants on soil communities has been hindered by a lack of experimental manipulations of both factors. We hypothesized that soil nematode communities would be structured predominantly by N addition via overall increased abundance, decreased diversity, and compositional shifts to dominance of r-selected bacterial-feeding nematodes. In contrast, we expected plant effects to be less evident and restricted to nematodes directly associated with plants.

Methods

We used a long-term (18-yrs) experiment in moist meadow alpine tundra involving N addition and codominant plant (nitrophilic Deschampsia cespitosa and nitrogen-sensitive Geum rossii) removal. We characterized nematode communities via 18S rRNA metabarcoding and used soil biogeochemistry, plant, and microbial variables to determine factors shaping their communities.

Results

The N addition treatment increased overall nematode abundance, decreased diversity, and affected the composition of all nematode trophic groups. Overall, nematode communities shifted to dominance of bacterial-feeding nematode taxa adapted to N-enriched environments. The likely drivers of this shift were increased soil nitrate and lower pH. The direct effects of codominant plants were more limited, with only changes in Geum rossii appearing to affect nematode responses.

Conclusion

Overall, nematode communities in N-limited alpine ecosystems are highly sensitive to increases in N availability, irrespective of the nature of N preferences of codominant plants. The resulting nematode community restructuring could signify future shifts in soil functioning throughout alpine landscapes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

All data is available at https://portal.edirepository.org/nis/mapbrowse?packageid=knb-lter-nwt.6.4

All codes are available at https://github.com/WormsEtAl/Codominant-Plants---N-addition.

References

  • Abarenkov K, Nilsson HR, Larsson KH, Alexander IJ, Eberhardt U et al (2010) The UNITE database for molecular identification of fungi – recent updates and future perspectives. New Phytol 186:281–285

    Article  PubMed  Google Scholar 

  • Amaral-Zettler LA, Bauer M, Berg-Lyons D, Betley J, Caporaso JG, Ducklow HW, Fierer N, Fraser L, Gilbert JA, Gormley N, Huntley J, Huse SM, Jansson JK, Jarman SN, Knight R,  Lauber CL, McCliment EA, Owens SM, Smith G, Thompson L, Vestheim H, Walters WA (2018) EMP 18S illumina amplicon protocol

  • Bahram M et al (2018) Structure and function of the global topsoil microbiome. Nature 560:233–237

    Article  CAS  PubMed  Google Scholar 

  • Bainard LD, Hamel C, Gan Y (2016) Edaphic properties override the influence of crops on the composition of the soil bacterial community in a semiarid agroecosystem. Appl Soil Ecol 105:160–168

    Article  Google Scholar 

  • Bardgett RD, van der Putten WH (2014) Belowground biodiversity and ecosystem functioning. Nature 515:505–511

    Article  CAS  PubMed  Google Scholar 

  • Bardgett RD, Wardle DA (2010) Aboveground-belowground linkages: biotic interactions, ecosystem processes, and global change. Oxford University Press, Oxford

    Google Scholar 

  • Bardgett RD, Cook R, Yeates GW, Denton CS (1999) The influence of nematodes on below-ground processes in grassland ecosystems. Plant Soil 212:23–33

    Article  CAS  Google Scholar 

  • Baron JS (2016) Long-term collaborative research helps Rocky Mountain National Park address nitrogen-based air pollution. USGS Climate Research and Development Program

    Google Scholar 

  • Bates D, Mächler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4. J Stat Softw 67:1–48

    Article  Google Scholar 

  • Berkelmans R, Ferris H, Tenuta M, van Bruggen AHC (2003) Effect of long-term crop management on nematode trophic levels other than plant feeders disappear after one year of disruptive soil management. Appl Soil Ecol 23:223–235

    Article  Google Scholar 

  • Bobbink R et al (2010) Global assessment of nitrogen deposition effects on terrestrial plant diversity: a synthesis. Ecol Appl 20:30–59

    Article  CAS  PubMed  Google Scholar 

  • Bongers T (1990) The maturity index: an ecological measure of environmental disturbance based on nematode species composition. Oecologia 83:14–19

    Article  PubMed  Google Scholar 

  • Bongers T (1999) The Maturity Index, the evolution of nematode life history traits, adaptive radiation and cp-scaling. Plant Soil 212:13–22

    Article  CAS  Google Scholar 

  • Bongers T, Bongers M (1998) Functional diversity of nematodes. Appl Soil Ecol 10:239–251

    Article  Google Scholar 

  • Bongers T, Ferris H (1999) Nematode community structure as a bioindicator in environmental monitoring. Trends Ecol Evol 14:224–228

    Article  CAS  PubMed  Google Scholar 

  • Bongers T, van der Meulen H, Korthals G (1997) Inverse relationship between the nematode maturity index and plant parasite index under enriched nutrient conditions. Appl Soil Ecol 6:195–199

    Article  Google Scholar 

  • Boot CM, Hall EK, Denef K, Baron JS (2016) Long-term reactive nitrogen loading alters soil carbon and microbial community properties in a subalpine forest ecosystem. Soil Biol Biochem 92:211–220

    Article  CAS  Google Scholar 

  • Bowman WD, Steltzer H, Rosenstiel TN, Cleveland CC, Meier CL (2004) Litter effects of two co-occurring alpine species on plant growth, microbial activity and immobilization of nitrogen. Oikos 104:336–344

    Article  Google Scholar 

  • Bowman WD, Gartner JR, Holland K, Wiedermann M (2006) Nitrogen critical loads for alpine vegetation and terrestrial ecosystem response: are we there yet? Ecol Appl 16:1183–1193

    Article  PubMed  Google Scholar 

  • Bowman WD, Cleveland CC, Halada Ĺ, Hreško J, Baron JS (2008) Negative impact of nitrogen deposition on soil buffering capacity. Nat Geosci 1:767–770

    Article  CAS  Google Scholar 

  • Bowman WD, Murgel J, Blett T, Porter E (2012) Nitrogen critical loads for alpine vegetation and soils in Rocky Mountain National Park. J Environ Manage 103:165–171

    Article  CAS  PubMed  Google Scholar 

  • Brigham LM, Bueno de Mesquita CP, Smith JG, Sartwell SA, Schmidt SK, Suding KN (2021) Do plant–soil interactions influence how the microbial community responds to environmental change? Ecology 103:e03554

    Article  PubMed  Google Scholar 

  • Bueno de Mesquita CP, Schmidt SK, Suding KN (2019) Litter-driven feedbacks influence plant colonization of a high elevation early successional ecosystem. Plant Soil 444:71–85

    Article  CAS  Google Scholar 

  • Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP (2016) DADA2: High-resolution sample inference from Illumina amplicon data. Nat Methods 13:581–583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caporaso JG, Ackermann G, Apprill A, Bauer M, Berg-Lyons D, Betley J, Fierer N, Fraser L, Fuhrman JA, Gilbert JA, Gormley N, Humphrey G, Huntley J, Jansson JK, Knight R, Lauber CL, Lozupone CA, McNally S, Needham DM, Owens SM, Parada AE, Parsons R, Smith G, Thompson LR, Turnbaugh PJ, Walters WA, Weber L (2018) EMP 16S illumina amplicon protocol

  • Cesarz S, Schulz AE, Beugnon R, Eisenhauer N (2019)Testing soil nematode extraction efficiency using different variations of the Baermann-funnel method. Soil Org 91(2):61

  • Chen D, Lan Z, Hu S, Bai Y (2015) Effects of nitrogen enrichment on belowground communities in grassland: Relative role of soil nitrogen availability vs. soil acidification. Soil Biol Biochem 89:99–108

    Article  CAS  Google Scholar 

  • Chen W, Xu R, Wu Y, Chen J, Zhang Y, Hu T et al (2018) Plant diversity is coupled with beta not alpha diversity of soil fungal communities following N enrichment in a semi-arid grassland. Soil Biol Biochem 116:388–398

    Article  CAS  Google Scholar 

  • Cleland EE, Harpole WS (2010) Nitrogen enrichment and plant communities. Ann N Y Acad Sci 1195:46–61

    Article  CAS  PubMed  Google Scholar 

  • Darby BJ, Neher DA, Belnap J (2007) Soil nematode communities are ecologically more mature beneath late- than early-successional stage biological soil crusts. Appl Soil Ecol 35:203–212

    Article  Google Scholar 

  • de Goede RG, Bongers T (1994) Nematode community structure in relation to soil and vegetation characteristics. Appl Soil Ecol 1(1):29–44

    Article  Google Scholar 

  • Dean SL, Farrer EC, Taylor DL, Porras-Alfaro A, Suding KN, Sinsabaugh RL (2014) Nitrogen deposition alters plant–fungal relationships: linking belowground dynamics to aboveground vegetation change. Mol Ecol 23:1364–1378

    Article  CAS  PubMed  Google Scholar 

  • Dean SL, Farrer EC, Porras-Alfaro A, Suding KN, Sinsabaugh RL (2015) Plant-bacteria response to N pollution. Environ Microbiol Rep 7:102–110

    Article  CAS  PubMed  Google Scholar 

  • Farrer EC, Herman DJ, Franzova E, Pham T, Suding KN (2013) Nitrogen deposition, plant carbon allocation, and soil microbes: changing interactions due to enrichment. Am J Bot 100:1458–1470

    Article  CAS  PubMed  Google Scholar 

  • Ferris H, Bongers T (2006) Nematode indicators of organic enrichment. J Nematol 38:3–12

    PubMed  PubMed Central  Google Scholar 

  • Ferris H, Bongers T, de Goede RGM (2001) A framework for soil food web diagnostics: extension of the nematode faunal analysis concept. Appl Soil Ecol 18:13–29

    Article  Google Scholar 

  • Freckman DW, Ettema C (1993) Assessing nematode communities in agroecosystems of varying human intervention. Agr Ecosyst Environ 45:239–261

    Article  Google Scholar 

  • French S (1997) Nitrogen pollution on Niwot Ridge, Colorado: The environment is slowly changing around us. https://www.susannafrench.com/writing/1997/08/01/184. Accessed Sept 2021

  • Galloway JN, Townsend AR, Erisman JW et al (2008) Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science 320:889–892

    Article  CAS  PubMed  Google Scholar 

  • Gasarch EI, Seastedt TR (2015) The consequences of multiple resource shifts on the productivity and composition of alpine tundra communities: inferences from a long-term snow and nutrient manipulation experiment. Plant Ecolog Divers 8(5–6):751–761

    Article  Google Scholar 

  • Gaston KJ (2011) Common ecology. Bioscience 61:354–362

    Article  Google Scholar 

  • Grime JP (1998) Benefits of plant diversity to ecosystems: immediate, filter and founder effects. J Ecol 86:902–910

    Article  Google Scholar 

  • Han WJ, Cao JY, Liu JL, Jiang J, Ni J (2019) Impacts of nitrogen deposition on terrestrial plant diversity: a meta-analysis in China. J Plant Ecol 12:1025–1033

    Article  Google Scholar 

  • Hodda M, Peters L, Traunspurger W (2009) Nematode diversity in terrestrial, freshwater aquatic and marine system. In: Wilson MJ, Kakouli-Duarte T (eds) Nematode as environmental indicators. CABI Publishing, Oxfordshire, pp 45–94

    Chapter  Google Scholar 

  • Hu W, Schmidt SK, Sommers P, Darcy JL, Porazinska DL (2021) Multiple-trophic patterns of primary succession following retreat of a high-elevation glacier. Ecosphere 12(3):e03400

    Article  Google Scholar 

  • Hu J, Zhou S, Tie L, Liu X, Liu X, Zhao A, Lai J, Xiao L, You C, Huang C (2022) Effects of nitrogen addition on soil faunal abundance: A global meta-analysis. Glob Ecol Biogeogr 31:1655–1666

    Article  Google Scholar 

  • Jiang YJ, Jin C, Sun B (2014) Soil aggregate stratification of nematodes and ammonia oxidizers affects nitrification in an acid soil. Environ Microbiol 16:3083–3094

    Article  CAS  PubMed  Google Scholar 

  • Jiang YJ et al (2015) Aggregate-related changes in network patterns of nematodes and ammonia oxidizers in an acidic soil. Soil Biol Biochem 88:101–109

    Article  CAS  Google Scholar 

  • JMP®, Version 16.1.0. SAS Institute Inc., Cary, NC, 1989–2021

  • Jonas JL, Joern A (2008) Host-plant quality alters grass/forb consumption by a mixed-feeding insect herbivore, Melanoplus bivittatus (Orthoptera: Acrididae). Ecol Entomol 33:546–554

    Article  Google Scholar 

  • Kuznetsova A, Brockhoff PB, Christensen RHB (2017) lmerTest package: tests in linear mixed effects models. J Stat Softw 82:1–26

    Article  Google Scholar 

  • Landesman WJ, Treonis AM, Dighton J (2011) Effects of a one-year rainfall manipulation on soil nematode abundances and community composition. Pedobiologia 54:87–91

    Article  Google Scholar 

  • Lebauer DS, Treseder KK (2008) Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed. Ecology 89:371–379

    Article  PubMed  Google Scholar 

  • Leff JW, Lynch RC, Kane NC, Fierer N (2017) Plant domestication and the assembly of bacterial and fungal communities associated with strains of the common sunflower, Helianthus annuus. New Phytol 214:412–423

    Article  CAS  PubMed  Google Scholar 

  • Li D (2018) hillR: taxonomic, functional, and phylogenetic diversity and similarity through Hill Numbers. Journal of Open Source Software 3:1041

    Article  Google Scholar 

  • Li W, Jin C, Guan D, Wang Q, Wang A, Yuan F, Wu J (2015) The effects of simulated nitrogen deposition on plant root traits: A meta-analysis. Soil Biol Biochem 82:112–118

    Article  CAS  Google Scholar 

  • Liang S, Kou X, Li Y, Lü X, Wang J, Li Q (2020) Soil nematode community composition and stability under different nitrogen additions in a semiarid grassland. Glob Ecol Conserv 22:e00965

    Google Scholar 

  • Liu X et al (2013) Enhanced nitrogen deposition over China. Nature 494:459–462

    Article  CAS  PubMed  Google Scholar 

  • Liu S et al (2020) Decoupled diversity patterns in bacteria and fungi across continental forest ecosystems. Soil Biol Biochem 144:107763

    Article  CAS  Google Scholar 

  • Lokupitiya E, Stanton NL, Seville RS, Snider JR (2000) Effects of increased nitrogen deposition on soil nematodes in alpine tundra soils. Pedobiologia 44:591–608

    Article  Google Scholar 

  • Lovett GM (2013) Critical issues for critical loads. Proc Natl Acad Sci 110:808–809

    Article  CAS  PubMed  Google Scholar 

  • Mahaney WC, Fabey BD (1988) Extractable Fe and Al in late Pleistocene and Holocene paleosols on Niwot Ridge, Colorado Front Range. CATENA 15:17–26

    Article  CAS  Google Scholar 

  • Martin M (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.journal 17:10–12

    Article  Google Scholar 

  • McMurdie PJ, Holmes S (2014) Waste not, want not: why rarefying microbiome data is inadmissible. PLoS Comput Biol 10:e1003531

    Article  PubMed  PubMed Central  Google Scholar 

  • Mekonen S, Petros I, Hailemariam M (2017) The role of nematodes in the processes of soil ecology and their use as bioindicators. Agric Biol J N Am 8:132–140

    CAS  Google Scholar 

  • Neher DA (2010) Ecology of plant and free-living nematodes in natural and agricultural soil. Annu Rev Phytopathol 48:371–394

    Article  CAS  PubMed  Google Scholar 

  • Neher DA, Wu J, Barbercheck ME, Anas O (2005) Ecosystem type affects interpretation of soil nematode community measures. Appl Soil Ecol 30:47–64

    Article  Google Scholar 

  • Neher DA, Weicht TR, Barbercheck ME (2012) Linking invertebrate communities to decomposition rate and nitrogen availability in pine forest soils. Appl Soil Ecol 54:14–23

    Article  Google Scholar 

  • Nemergut DR, Townsend AR, Sattin SR et al (2008) The effects of chronic nitrogen fertilization on alpine tundra soil microbial communities: implications for carbon and nitrogen cycling. Environ Microbiol 10:3093–3105

    Article  CAS  PubMed  Google Scholar 

  • Okada H, Harada H, Kadota I (2005) Fungal-feeding habits of six nematode isolates in the genus Filenchus. Soil Biol Biochem 37:1113–1120

    Article  CAS  Google Scholar 

  • Oksanen J et al (2020) vegan: Community Ecology Package. R package version 2.5–7. https://CRAN.R-project.org/package=vegan

  • Porazinska DL, Giblin-Davis RM, Faller L, Farmerie W, Kanzaki N, Morris K, Powers TO, Tucker AE, Sung W, Thomas WK (2009) Evaluating high-throughput sequencing as a method for metagenomic analysis of nematode diversity. Mol Ecol Resour 9:1439–1450

    Article  CAS  PubMed  Google Scholar 

  • Porazinska DL, Farrer EC, Spasojevic MJ, Bueno de Mesquita CP, Sartwell SA, Smith JG, White CT, King AJ, Suding KN, Schmidt SK (2018) Plant diversity and density predict belowground diversity and function in an early successional alpine ecosystem. Ecology 99(9):1942–1952

    Article  PubMed  Google Scholar 

  • Prober SM et al (2014) Plant diversity predicts beta but not alpha diversity of soil microbes across grasslands worldwide. Ecol Lett 18:85–95

    Article  PubMed  Google Scholar 

  • Qing X, Bert W (2019) Family Tylenchidae (Nematoda): an overview and perspectives. Org Divers Evol 19:391–408

    Article  Google Scholar 

  • Quast C et al (2013) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41:590–596

    Article  Google Scholar 

  • R Core Team (2021) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/

  • Rousk J et al (2010) Soil bacterial and fungal communities across a pH gradient in an arable soil. ISME J 4:1340–1351

    Article  PubMed  Google Scholar 

  • Saul-Tcherkas V, Unc A, Steinberger Y (2013) Soil microbial diversity in the vicinity of desert shrubs. Microb Ecol 65:689–699

    Article  PubMed  Google Scholar 

  • Sayer E (2006) Using experimental manipulation to assess the roles of leaf litter in the functioning of forest ecosystems. Biol Rev 81:1–31

    Article  PubMed  Google Scholar 

  • Seastedt TR, Walker MD, Bryant DM (2001) Controls on decomposition processes in Alpine Tundra. In: Bowman WD, Seastedt TR (eds) Structure and function of an alpine ecosystem: Niwot Ridge, Colorado. Oxford University Press, p 0

    Google Scholar 

  • Shaw EA, Boot CM, Moore JC, Wall DH, Baron JS (2019) Long-term nitrogen addition shifts the soil nematode community to bacterivore-dominated and reduces its ecological maturity in a subalpine forest. Soil Biol Biochem 130:17–184

    Article  Google Scholar 

  • Sherman C, Sternberg M, Steinberger Y (2012) Effects of climate change on soil respiration and carbon processing in Mediterranean and semi-arid regions: An experimental approach. Eur J Soil Biol 52:48–58

    Article  CAS  Google Scholar 

  • Shi XM et al (2017) Epiphytic bryophytes as bio-indicators of atmospheric nitrogen deposition in a subtropical montane cloud forest: Response patterns, mechanism, and critical load. Environ Pollut 229:932–941

    Article  CAS  PubMed  Google Scholar 

  • Sieriebriennikov B, Ferris H, de Goede RGM (2014) NINJA: An automated calculation system for nematode-based biological monitoring. Eur J Soil Biol 61:90–93

    Article  Google Scholar 

  • Simkin SM et al (2016) Conditional vulnerability of plant diversity to atmospheric nitrogen deposition across the United States. PNAS 113:4086–4091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh BK, Dawson LA, Macdonald CA, Buckland SM (2009) Impact of biotic and abiotic interaction on soil microbial communities and functions: a field study. Appl Soil Ecol 41:239–248

    Article  Google Scholar 

  • Steltzer H, Bowman WD (1998) Differential influence of plant species on soil nitrogen transformations within moist meadow alpine tundra. Ecosystems 1:464–474

    Article  CAS  Google Scholar 

  • Suding KN et al (2008) Plant and microbe contribution to community resilience in a directionally changing environment. Ecol Monogr 78:313–329

    Article  Google Scholar 

  • Sun X, Zhang X, Zhang S, Dai G, Han S, Liang W (2013) Soil nematode responses to increases in nitrogen deposition and precipitation in a temperate forest. PLoS ONE 8:e82468

    Article  PubMed  PubMed Central  Google Scholar 

  • Sun Y, Guo J, Li Y, Luo G, Li L, Yuan H, Mur LAJ, Guo S (2020) Negative effects of the simulated nitrogen deposition on plant phenolic metabolism: A meta-analysis. Sci Total Environ 719:137442

    Article  CAS  PubMed  Google Scholar 

  • Todd TC (1996) Effects of management practices on nematode community structure in tallgrass prairie. Appl Soil Ecol 3:235–246

    Article  Google Scholar 

  • Treonis AM, Unangst SK, Kepler RM, Buyer JS, Cavigelli MA, Mirsky SB, Maul JE (2018) Characterization of soil nematode communities in three cropping systems through morphological and DNA metabarcoding approaches. Sci Rep 8(1):2004

  • Treseder KK (2008) Nitrogen additions and microbial biomass: a meta-analysis of ecosystem studies. Ecol Lett 11:1111–1120

    Article  PubMed  Google Scholar 

  • van den Hoogen J, Geisen S, Routh D et al (2019) Soil nematode abundance and functional group composition at a global scale. Nature 572:194–198. https://doi.org/10.1038/s41586-019-1418-6

    Article  CAS  PubMed  Google Scholar 

  • Viglierchio DR, Schmitt RV (1983) On the methodology of nematode extraction from field samples: baermann funnel modifications. J Nematol 15:438–444

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang C, Liu D, Bai E (2018) Decreasing soil microbial diversity is associated with decreasing microbial biomass under nitrogen addition. Soil Biol Biochem 120:126–133

    Article  CAS  Google Scholar 

  • Wardle DA, Bardgett RD, Klironomos JN, Setälä H, van der Putten WH, Wall DH (2004) Ecological linkages between aboveground and belowground biota. Science 304:1629–1633

    Article  CAS  PubMed  Google Scholar 

  • Wei C et al (2012) Nitrogen addition regulates soil nematode community composition through ammonium suppression. PLoS ONE 7:1601–1620

    Google Scholar 

  • Wei T, Simko V (2021) R package 'corrplot': Visualization of a Correlation Matrix (Version 0.92). https://github.com/taiyun/corrplot

  • Wickham H (2016) ggplot2: Elegant graphics for data analysis. Springer-Verlag New York, Manhattan. https://ggplot2.tidyverse.org/

    Book  Google Scholar 

  • Williams MW, Tonnessen KA (2000) Critical loads for inorganic nitrogen deposition in the Colorado Front Range, USA. Ecol Appl 10:1648–1665

    Article  Google Scholar 

  • Willis AD (2019) Rarefaction, alpha diversity, and statistics. Front Microbiol 10:2407

    Article  PubMed  PubMed Central  Google Scholar 

  • Yeates GW (2003) Nematodes as soil indicators: functional and biodiversity aspects. Biol Fertil Soils 37:199–210

    Article  Google Scholar 

  • Yeates GW, Bongers T, de Goede RGM, Freckman DW, Georgieva SS (1993) Feeding habits in soil nematode families and genera-an outline for soil ecologists. J Nematol 25:315–331

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yilmaz P et al (2014) The SILVA and “all-species Living Tree Project (LTP)” taxonomic frameworks. Nucleic Acids Res 42:643–648

    Article  Google Scholar 

  • Zhang Z et al (2016) Effect of long-term combined application of organic and inorganic fertilizers on soil nematode communities within aggregates. Sci Rep 6:31118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang T, Chen HYH, Ruan H (2018) Global negative effects of nitrogen deposition on soil microbes. ISME 12:1817–1825

    Article  CAS  Google Scholar 

  • Zhao J, Wang F, Li J, Zou B, Wang X, Li Z, Fu S (2014) Effects of experimental nitrogen and/or phosphorus additions on soil nematode communities in a secondary tropical forest. Soil Biol Biochem 75:1–10

    Article  CAS  Google Scholar 

  • Zhou Q, Xiang Y, Li D, Luo X, Wu J (2021) Global patterns and controls of soil nematode responses to nitrogen enrichment: A meta-analysis. Soil Biol Biochem 163:108433

    Article  CAS  Google Scholar 

  • Zhou Q, Wang X, Wu Y, Chen Z, Li D, Shao Y, Wu J (2022) Contrasting responses of soil nematode trophic groups to long-term nitrogen addition. Ecosystems 26(4):1–16

    Google Scholar 

Download references

Acknowledgements

We thank Noah Fierer at the University of Colorado at Boulder for funding the 16S sequencing through his Microbial Methods course. We thank Ciara Asamoto, Katherine Hernandez, Jessica Henley, and Matt Gebert for help with DNA extraction and PCR, and Angela Oliverio and Hannah Holland-Moritz for bioinformatics help. We thank all the field technicians who collected data through the course of this experiment—William Bowman, Julia Larson, Heather Bechtold, Isabel Ashton, Emily Farrer, Marko Spasojevic, and others.

Funding

This work was funded by grants from the Andrew W. Mellon Foundation, and the National Science Foundation (to K. N. Suding, DEB-0919569; and Niwot Ridge LTER, DEB-0423662, DEB-1027341, DEB-1637686).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rachel M. Shepherd or Dorota L. Porazinska.

Ethics declarations

Competing interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Responsible Editor: Wen-Hao Zhang.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 391 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shepherd, R.M., Brigham, L.M., de Mesquita, C.P.B. et al. Trophic group specific responses of alpine nematode communities to 18 years of N addition and codominant plant removal. Plant Soil 494, 353–371 (2024). https://doi.org/10.1007/s11104-023-06281-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-023-06281-3

Keywords

Navigation