Skip to main content
Log in

Soil Microbial Diversity in the Vicinity of Desert Shrubs

  • Soil Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Water and nutrient availability are the major limiting factors of biological activity in arid and semiarid ecosystems. Therefore, perennial plants have developed different ecophysiological adaptations to cope with harsh conditions. The chemical profile of the root exudates varies among plant species and this can induce variability in associated microbial populations. We examined the influence of two shrubs species, Artemisia sieberi and Noaea mucronata, on soil microbial diversity. Soil samples were collected monthly, from December 2006 to November 2007, near canopies of both shrubs (0–10-cm depth). Samples were used for abiotic tests and determination of soil bacterial diversity. No significant differences were found in the abiotic variables (soil moisture, total organic matter, and total soluble nitrogen (TSN)) between soil samples collected from under the two shrubs during the study period. No obvious differences in the Shannon–Weaver index, evenness values, or total phylogenetic distances were found for the soil microbial communities. However, detailed denaturing gradient gel electrophoresis (DGGE) clustering as well as taxonomic diversity analyses indicated clear shifts in the soil microbial community composition. These shifts were governed by seasonal variability in water availability and, significantly, by plant species type.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Noy-Meir I (1973) Desert ecosystems: environment and producers. Ann Rev Ecol Syst 4:25–51

    Article  Google Scholar 

  2. Noy-Meir I (1974) Desert ecosystems: higher trophic levels. Ann Rev Ecol Syst 5:195–214

    Article  Google Scholar 

  3. West NE, Skujins J (1978) Nitrogen in desert ecosystems, US/IBP no. 9. Dowden, Hutchinson and Ross, Stroudsburg

    Google Scholar 

  4. Larson WE, Pierce FJ (1994) The dynamics of soil quality as measure of sustainable management. In: Doran DW, Coleman DC, Bendicek DF, Stewart BA (eds) Defining soil quality for sustainable environment. Soil Science Society of America Inc. and American Society of Agronomy Inc., Madison, pp 37–51

    Google Scholar 

  5. Steinberger Y, Loboda I (1991) Nematode population dynamics and trophic structure in a soil profile under the canopy of the desert shrub Zygophyllum dumosum. Pedobiologia 35:191–197

    Google Scholar 

  6. Steinberger Y (1995) Soil fauna in arid ecosystems: their role and functions in organic matter cycling. Adv GeoEcol 28:29–36

    Google Scholar 

  7. Cornwell WK, Cornelissen JHC, Amatangelo K, Dorrepaal E, Eviner VT, Godoy O, Hobbie SE, Hoorens B, Kurokawa H, Perez-Harguindeguy N, Quested HM, Santiago LS, Wardle DA, Wright IJ, Aerts R, Allison SD, van Bodegom P, Brovkin V, Chatain A, Callaghan TV, Diaz S, Garnier E, Gurvich DE, Kazakou E, Klein JA, Read J, Reich PB, Soudzilovskaia NA, Vaieretti MV, Westoby M (2008) Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecol Lett 11:1065–1071

    Article  PubMed  Google Scholar 

  8. Buyanovsky G, Dicke M, Berwick P (1982) Soil environment and activity of soil microflora in the Negev Desert. J Arid Environ 5:13–28

    Google Scholar 

  9. Coleman DC (1985) Through a ped darkly: an ecological assessment of root-soil-microbial-faunal interactions. In: Fitter AH, Atkinson D, Read DJ, Usher MB (eds) Ecological interactions in soil. Blackwell, Cambridge, pp 1–21

    Google Scholar 

  10. Beare MH, Parmelee RW, Hendrix PF, Cheng W (1992) Microbial and fungal interactions and effects on litter nitrogen and decomposition in agroecosystems. Ecol Monogr 62:569–591

    Article  Google Scholar 

  11. Sarig S, Steinberger Y (1993) Immediate effect of wetting event on microbial biomass and carbohydrate production mediated aggregation in desert soil. Geoderma 56:599–607

    Article  CAS  Google Scholar 

  12. Evenari ME, Shanan L, Tadmor W (1982) The Negev: the challenge of a desert. Harvard University Press, Cambridge

    Google Scholar 

  13. Shmida A, Evenari M, Noy-Meir I (1986) Hot desert ecosystems. An integrated view. In: Evenari M, Noy-Meir I, Goodall DW (eds) Ecosystems of the world: hot deserts and arid shrublands. Elsevier, Amsterdam, pp 379–387

    Google Scholar 

  14. Whitford WG (2002) Ecology of desert systems. Academic, New York

    Google Scholar 

  15. Zhou JZ, Davey ME, Figueras JB, Rivkina E, Gilichinsky D, Tiedje JM (1997) Phylogenetic diversity of a bacterial community determined from Siberian tundra soil DNA. Microbiology 143:3913–3919

    Article  PubMed  CAS  Google Scholar 

  16. Bagayoko M, Alvey S, Neumann G, Buerkert A (2000) Root-induced increases in soil pH and nutrient availability to field-grown cereals and legumes on acid sandy soils of Sudano-Sahelian West Africa. Plant Soil 225:117–127

    Article  CAS  Google Scholar 

  17. Stephan A, Meyer AH, Schmid B (2000) Plant diversity affects culturable soil bacteria in experimental grassland communities. J Ecol 88:988–998

    Article  Google Scholar 

  18. Smalla K, Wieland G, Buchner A, Zock A, Parzy J, Kaiser S, Roskot N, Heuer H, Berg G (2001) Bulk and rhizosphere soil bacterial communities studied by denaturing gradient gel electrophoresis: plant-dependent enrichment and seasonal shifts revealed. Appl Environ Microbiol 67:4742–4751

    Article  PubMed  CAS  Google Scholar 

  19. Costa R, Gotz M, Mrotzek N, Lottmann J, Berg G, Smalla K (2006) Effects of site and plant species on rhizosphere community structure as revealed by molecular analysis of microbial guilds. FEMS Microbiol Ecol 56:236–249

    Article  PubMed  CAS  Google Scholar 

  20. Loranger-Merciris G, Barthes L, Gastine A, Leadley P (2006) Rapid effects of plant species diversity and identity on soil microbial communities in experimental grassland ecosystems. Soil Biol Biochem 38:2336–2343

    Article  CAS  Google Scholar 

  21. McCaig AE, Glover LA, Prosser JI (1999) Molecular analysis of bacterial community structure and diversity in unimproved and improved upland grass pastures. Appl Environ Microbiol 65:1721–1730

    PubMed  CAS  Google Scholar 

  22. Kowalchuk GA, Buma DS, de Boer W, Klinkhamer PGL, van Veen JA (2002) Effects of above-ground plant species composition and diversity on the diversity of soil-borne microorganisms. Anton Leeuw Int J G 81:509–520

    Article  Google Scholar 

  23. Nunan N, Daniell TJ, Singh BK, Papert A, McNicol JW, Prosser JI (2005) Links between plant and rhizoplane bacterial communities in grassland soils, characterized using molecular techniques. Appl Environ Microbiol 71:6784–6792

    Article  PubMed  CAS  Google Scholar 

  24. Haichar FE, Marol C, Berge O, Rangel-Castro JI, Prosser JI, Balesdent J, Heulin T, Achouak W (2008) Plant host habitat and root exudates shape soil bacterial community structure. ISME J 2:1221–1230

    Article  PubMed  CAS  Google Scholar 

  25. Sorensen J (1997) The rhizosphere as a habitat for soil microorganisms. In: van Elsas JD, Trevors JT, Wellington EMH (eds) Modern soil microbiology. Marcel Dekker, New York, pp 21–45

    Google Scholar 

  26. Jaeger CH, Lindow SE, Miller S, Clark E, Firestone MK (1999) Mapping of sugar and amino acid availability in soil around roots with bacterial sensors of sucrose and Tryptophan. Appl Environ Microbiol 65:2685–2690

    PubMed  CAS  Google Scholar 

  27. Lynch JM, Whipps JM (1990) Substrate flow in the rhizosphere. Plant Soil 129:1–10

    Article  CAS  Google Scholar 

  28. Friedman J (1995) Allelopathy, autotoxicity, and germination. In: Kigel J, Galili G (eds) Seed development and germination. Marcel Dekker, NY, pp 599–628

    Google Scholar 

  29. Rowell DL (1994) Soil science: methods and applications. Longman, London

    Google Scholar 

  30. Lahav I, Steinberger Y (2001) Soil bacterial functional diversity in a potato field. Eur J Soil Biol 37:59–67

    Article  Google Scholar 

  31. S.F.A.S. (1995) Manual—SAN Plus analyzer. Skalar Analytical, The Netherlands

    Google Scholar 

  32. Altschul SF, Madden TL, Schaffer AA, Zhang JH, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  PubMed  CAS  Google Scholar 

  33. Sun S, Chen J, Li W, Altinatas I, Lin A, Peltier S, Stocks K, Allen EE, Ellisman M, Grethe J, Wooley J (2011) Community cyberinfrastructure for advanced microbial ecology research and analysis: the CAMERA resource. Nucleic Acids Res 39(Suppl 1):D546–D551

    Article  PubMed  CAS  Google Scholar 

  34. Shannon CE, Weaver W (1949) The mathematical theory of communication. University of Illinois Press, Urbana

    Google Scholar 

  35. Pielou EC (1966) The measurement of diversity in different types of biological collections. Statistical Research Service, Canada Department of Agriculture, Ottawa

    Google Scholar 

  36. Sorensen T (1948) A method of establishing groups of equal amplitude in plant society based on similarity of species content. K Danske Vidensk Selsk Biol SKR 5:1–34

    Google Scholar 

  37. Huson DH, Auch AF, Qi J, Schuster SC (2007) MEGAN analysis of metagenomic data. Genome Res 17:377–386

    Article  PubMed  CAS  Google Scholar 

  38. Huson DH, Mitra S, Ruscheweyh HJ, Weber N, Schuster SC (2011) Integrative analysis of environmental sequences using MEGAN4. Genome Res 21:1552–1560

    Article  PubMed  CAS  Google Scholar 

  39. Huson DH, Bryant D (2006) Application of phylogenetic networks in evolutionary studies. Mol Biol Evol 23:254–267

    Article  PubMed  CAS  Google Scholar 

  40. Niu B, Fu L, Sun S, Li W (2010) Artificial and natural duplicates in pyrosequencing reads of metagenomic data. BMC Bioinform 11:187

    Article  Google Scholar 

  41. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and clustal X version 2.0. Bioinformatics 23:2947–2948

    Article  PubMed  CAS  Google Scholar 

  42. Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704

    Article  PubMed  Google Scholar 

  43. Faith DP (1992) Conservation evaluation and phylogenetic diversity. Biol Conserv 61:1–10

    Article  Google Scholar 

  44. Faith DP (2006) The role of the phylogenetic diversity measure, PD, in bio-informatics: getting the definition right. Evol Bioinform 2:277–283

    Google Scholar 

  45. Zhang H, Sekiguchi Y, Hanada S, Hugenholtz P, Kim H, Kamagata Y, Nakamura K (2003) Gemmatimonas aurantiaca gen. nov., sp nov., a gram-negative, aerobic, polyphosphate-accumulating micro-organism, the first cultured representative of the new bacterial phylum Gemmatimonadetes phyl. nov. Int J Syst Evol Microbiol 53:1155–1163

    Article  PubMed  CAS  Google Scholar 

  46. Martin-Laurent F, Philippot L, Hallet S, Chaussod R, Germon JC, Soulas G, Catroux G (2001) DNA extraction from soils: old bias for new microbial diversity analysis methods. Appl Environ Microbiol 67:2354–2359

    Article  PubMed  CAS  Google Scholar 

  47. McGuire KL, Treseder KK (2010) Microbial communities and their relevance for ecosystem models: decomposition as a case study. Soil Biol Biochem 42:529–535

    Article  CAS  Google Scholar 

  48. Maloney PE, van Bruggen AHC, Hu S (1997) Bacterial community structure in relation to the carbon environment in lettuce and tomato rhizosphere and in bulk soil. Microb Ecol 34:109–117

    Article  PubMed  CAS  Google Scholar 

  49. Hertenberger G, Zampach P, Bachmann G (2002) Plant species affect the concentration of free sugars and free amino acids in different types of soil. J Plant Nutr Soil Sci 165:557–565

    Article  CAS  Google Scholar 

  50. Buckley DH, Schmidt TM (2003) Diversity and dynamics of microbial communities in soils from agro-ecosystems. Environ Microbiol 5:441–452

    Article  PubMed  Google Scholar 

  51. Johnson MJ, Lee KY, Scow KM (2003) DNA fingerprinting reveals links among agricultural crops, soil properties, and the composition of soil microbial communities. Geoderma 114:279–303

    Article  Google Scholar 

  52. Steinberger Y, Vishnevetsky S, Barness G, Lavee H (1998) Effects of topoclimatic gradient on soil dehydrogenase activity in a Judean Desert ecosystem. Arid Soil Res Rehab 12:387–393

    Article  CAS  Google Scholar 

  53. Dilly O, Buscot F, Varma A (2005) Microbial energetics in soils. Soil biology, volume 3, Microorganisms in soils: roles in genesis and functions. Springer, Berlin, pp 123–138

    Book  Google Scholar 

  54. Jones DL, Murphy DV (2007) Microbial response time to sugar and amino acid additions to soil. Soil Biol Biochem 39:2178–2182

    Article  CAS  Google Scholar 

  55. Broeckling CD, Broz AK, Bergelson J, Manter DK, Vivanco JM (2008) Root exudates regulate soil fungal community composition and diversty. Appl Environ Microbiol 74:738–744

    Article  PubMed  CAS  Google Scholar 

  56. Brimecombe MJ, De Leij FA, Lynch JA (2001) The effect of root exudates on rhizosphere microbial populations. In: Pinton R, Varanini Z, Nannipieri P (eds) The rhizosphere: biochemistry and organic substances at the soil–plant interface. Marcel Dekker, Inc., NY, pp 95–104

    Google Scholar 

  57. Jacobson KM, Jacobson PJ (1998) Rainfall regulates decomposition of buried cellulose in the Namib Desert. J Arid Environ 38:571–583

    Article  Google Scholar 

  58. Bachelet D, Brugnach M, Neilson RP (1998) Sensitivity of a biogeography model to soil properties. Ecol Model 109:77–98

    Article  Google Scholar 

  59. Reynolds JF, Virginia RA, Kemp PR, de Soyza AG, Tremmel DC (1999) Impact of drought on desert shrubs: effects of seasonality and degree of resource island development. Ecol Monogr 69:69–106

    Article  Google Scholar 

  60. Reynolds JF, Kemp PR, Ogle K, Fernandez RJ (2004) Modifying the ‘pulse-reserve’ paradigm for deserts of North America: precipitation pulses, soil water, and plant responses. Oecologia 141:194–210

    Article  PubMed  Google Scholar 

  61. Janssen PH (2006) Identifying the dominant soil bacterial taxa in libraries of 16S rRNA and 16S rRNA genes. Appl Environ Microbiol 72:1719–1728

    Article  PubMed  CAS  Google Scholar 

  62. Germida JJ, Siciliano SD, de Freitas JR, Seib AM (1998) Diversity of root-associated bacteria associated with field-grown canola (Brassica napus L.) and wheat (Triticum aestivum L.). FEMS Microbiol Ecol 26:43–50

    Article  CAS  Google Scholar 

  63. Germida JJ, Siciliano SD (2001) Taxonomic diversity of bacteria associated with the roots of modern, recent and ancient wheat cultivars. Biol Fertil Soils 33:410–415

    Article  Google Scholar 

  64. Di Cello F, Bevivino A, Chiarini L, Fani R, Paffetti D, Tabacchioni S, Dalmastri C (1997) Biodiversity of a Burkholderia cepacia population isolated from the maize rhizosphere at different plant growth stages. Appl Environ Microbiol 63:4485–4493

    PubMed  Google Scholar 

  65. Latour X, Corberand TS, Laguerre G, Allard F, Lemanceau P (1996) The composition of fluorescent pseudomonad populations associated with roots is influenced by plant and soil type. Appl Environ Microbiol 62:2449–2456

    PubMed  CAS  Google Scholar 

  66. Westover KM, Kennedy AC, Kelley SC (1997) Patterns of rhizosphere microbial community structure associated with co-occurring plant species. J Ecol 85:863–873

    Article  Google Scholar 

  67. Marschner P, Yang CH, Lieberei R, Crowley DE (2001) Soil and plant specific effects on bacterial community composition in the rhizosphere. Soil Biol Biochem 33:1437–1445

    Article  CAS  Google Scholar 

  68. Bowen GD, Rovira AD (1991) The rhizosphere—the hidden half of the hidden half. In: Waisel Y, Eshel A, Kafkafi U (eds) Plant roots—the hidden half. Marcel Dekker, New York, pp 641–649

    Google Scholar 

  69. Bolton H Jr, Fredrickson JK, Elliott LF (1994) Microbial ecology of the rhizosphere. In: Metting FB Jr (ed) Soil microbial ecology. Marcel Dekker, New York, pp 27–63

    Google Scholar 

  70. Grayston SJ, Wang S, Campbell CD, Edwards AC (1998) Selective influence of plant species on microbial diversity in the rhizosphere. Soil Biol Biochem 30:369–378

    Article  CAS  Google Scholar 

  71. Carney KM, Matson PA (2005) Plant communities, soil microorganisms, and soil carbon cycling: does altering the world belowground matter to ecosystem functioning? Ecosystems 8:928–940

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Lilach Iasur, Hila Elifantz, and Patricia Bucki (students of Dr. Dror Minz), and Dr. Einav Mayzlish-Gati for consultation and guidance. Many thanks go to Dr. Orit Shaul for providing the necessary equipment. Special thanks to Ms. Sharon Victor for language editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yosef Steinberger.

Additional information

This paper is dedicated in loving memory to Saul Saul (father of V.S.-T.).

Subject category: Microbial population and community ecology: environmental factors (biotic and abiotic) defining the distribution and abundance of microbial populations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(JPEG 58 kb)

Highresolution (TIFF 977 kb)

ESM 2

(DOC 28 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saul-Tcherkas, V., Unc, A. & Steinberger, Y. Soil Microbial Diversity in the Vicinity of Desert Shrubs. Microb Ecol 65, 689–699 (2013). https://doi.org/10.1007/s00248-012-0141-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-012-0141-8

Keywords

Navigation