Skip to main content
Log in

MsDIUP1 encoding a putative novel LEA protein positively modulates salt tolerance in alfalfa (Medicago sativa L.)

  • Research Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background

Salt stress seriously impacts the plantation and productivity of global alfalfa (Medicago sativa). Previously, we genetically defined the M. sativa DROUGHT-INDUCED UNKNOWN PROTEIN 1 (MsDIUP1) as a drought tolerance gene of alfalfa. However, whether it is associated with salt tolerance needs to be explored.

Results

In this study, we re-classified MsDIUP1 as a putative novel late embryogenesis abundant protein, and found its promoter activity was strongly induced by salt and ABA treatment. Heterologous overexpression of MsDIUP1 in Arabidopsis led to enhanced salt tolerance and ABA insensitivity, with a higher fresh weight, lateral root number, primary root length, and survival rate compared to the wild-type (WT) plants. Similarly, homologous overexpression of MsDIUP1 also enhanced the salt tolerance of alfalfa over-expression (OE) plants, accompanied by reduced oxidative damage, higher K+/Na+ ratio, increased osmoprotectant accumulation, and improved photosynthetic capacity relative to the WT plants. In reverse, disruption of MsDIUP1 expression caused a salt-hypersensitive phenotype of alfalfa RNA interference (RNAi) plants, with higher oxidative damage, less osmoprotectant accumulation, and lower photosynthetic pigment content than that of the WT. These physiological discoveries were in accordance with differential transcript profiles of the relevant genes associated with stress signaling, antioxidant defense, and osmotic adjustment in the salt-treated alfalfa WT, OE, and RNAi lines. Furthermore, we found that alfalfa OE plants showed no apparent alteration in their forage quality compared with the WT plants.

Conclusions

Overall, these results reveal that MsDIUP1 improves plant salt tolerance via regulating stress signaling, antioxidant defense, ion homeostasis, osmotic adjustment, and photosynthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ahmad A, Ismun A, Taib M, Ilias MA, Ismail A, Othman R, Zainudin S (2017) Effects of salinity stress on carbohydrate metabolism in Cryptocoryne elliptica cultures. J Trop Plant Physiol 9:1–13

    CAS  Google Scholar 

  • Alzahrani FO (2021) Metabolic engineering of osmoprotectants to elucidate the mechanism (s) of salt stress tolerance in crop plants. Planta 253:1–17

    Google Scholar 

  • Amara I, Zaidi I, Masmoudi K, Ludevid MD, Pagès M, Goday A, Brini F (2014) Insights into late embryogenesis abundant (LEA) proteins in plants: from structure to the functions. Am J Plant Sci 5:3440–3455

    Article  Google Scholar 

  • Arfan M, Athar HR, Ashraf M (2007) Does exogenous application of salicylic acid through the rooting medium modulate growth and photosynthetic capacity in two differently adapted spring wheat cultivars under salt stress? J Plant Physiol 164:685–694

    Article  CAS  PubMed  Google Scholar 

  • Arif Y, Singh P, Siddiqui H, Bajguz A, Hayat S (2020) Salinity induced physiological and biochemical changes in plants: An omic approach towards salt stress tolerance. Plant Physiol Biochem 156:64–77

    Article  CAS  PubMed  Google Scholar 

  • Arnold AM, Cassida KA, Albrecht KA, Hall MH, Min D, Xu X, Orloff S, Undersander DJ, van Santen E, Sulc RM (2019) Multistate evaluation of reduced-lignin alfalfa harvested at different intervals. Crop Sci 59:1799–1807

    Article  CAS  Google Scholar 

  • Ashrafi E, Razmjoo J, Zahedi M, Pessarakli M (2014) Selecting alfalfa cultivars for salt tolerance based on some physiochemical traits. Agron J 106:1758–1764

    Article  CAS  Google Scholar 

  • Baba SA, Vishwakarma RA, Ashraf N (2017) Functional characterization of CsBGlu12, a β-glucosidase from Crocus sativus, provides insights into its role in abiotic stress through accumulation of antioxidant flavonols. J Biol Chem 292:4700–4713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bai Y, Yang Q, Kang J, Sun Y, Gruber M, Chao Y (2012) Isolation and functional characterization of a Medicago sativa L. gene, MsLEA3-1. Mol Biol Rep 39:2883–2892

    Article  CAS  PubMed  Google Scholar 

  • Bao AK, Wang SM, Wu GQ, Xi JJ, Wang CM (2009) Overexpression of the Arabidopsis H+-PPase enhanced resistance to salt and drought stress in transgenic alfalfa (Medicago sativa L.). Plant Sci 176:232–240

    Article  CAS  Google Scholar 

  • Bao AK, Du BQ, Touil L, Kang P, Wang QL, Wang SM (2016) Co-expression of tonoplast cation/H+ antiporter and H+-pyrophosphatase from xerophyte Zygophyllum xanthoxylum improves alfalfa plant growth under salinity, drought and field conditions. Plant Biotechnol J 14:964–975

    Article  CAS  PubMed  Google Scholar 

  • Brini F, Hanin M, Lumbreras V, Amara I, Khoudi H, Hassairi A, Masmoudi K (2007) Overexpression of wheat dehydrin DHN-5 enhances tolerance to salt and osmotic stress in Arabidopsis thaliana. Plant Cell Rep 26:2017–2026

    Article  CAS  PubMed  Google Scholar 

  • Chan Z (2012) Expression profiling of ABA pathway transcripts indicates crosstalk between abiotic and biotic stress responses in Arabidopsis. Genomics 100:110–115

    Article  CAS  PubMed  Google Scholar 

  • Chan C, Lam HM (2014) A putative lambda class glutathione S-transferase enhances plant survival under salinity stress. Plant Cell Physiol 55:570–579

    Article  CAS  PubMed  Google Scholar 

  • Chen HC, Cheng WH, Hong CY, Chang YS, Chang MC (2018) The transcription factor OsbHLH035 mediates seed germination and enables seedling recovery from salt stress through ABA-dependent and ABA-independent pathways, respectively. Rice 11:1–17

    Article  Google Scholar 

  • Chen KM, Holmström M, Raksajit W, Suorsa M, Piippo M, Aro EM (2010) Small chloroplast-targeted DnaJ proteins are involved in optimization of photosynthetic reactions in Arabidopsis thaliana. BMC Plant Biol 10:1–15

    Article  CAS  Google Scholar 

  • Couée I, Hummel I, Sulmon C, Gouesbet G, Amrani AE (2004) Involvement of polyamines in root development. Plant Cell Tiss Org 76:1–10

    Article  Google Scholar 

  • Dalal M, Tayal D, Chinnusamy V, Bansal KC (2009) Abiotic stress and ABA-inducible Group 4 LEA from Brassica napus plays a key role in salt and drought tolerance. J Biotechnol 139:137–145

    Article  CAS  PubMed  Google Scholar 

  • De S, Chavez-Calvillo G, Wahlsten M, Mäkinen K (2018) Disruption of the methionine cycle and reduced cellular gluthathione levels underlie potex–potyvirus synergism in Nicotiana benthamiana. Mol Plant Pathol 19:1820–1835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Devkota KP, Devkota M, Rezaei M, Oosterbaan R (2022) Managing salinity for sustainable agricultural production in salt-affected soils of irrigated drylands. Agric Syst 198:103390

    Article  Google Scholar 

  • Du J, Wang L, Zhang X, Xiao X, Wang F, Lin P, Bao F, Hu Y, He Y (2016) Heterologous expression of two Physcomitrella patens group 3 late embryogenesis abundant protein (LEA3) genes confers salinity tolerance in Arabidopsis. J Plant Biol 59:182–193

    Article  CAS  Google Scholar 

  • Duan L, Dietrich D, Ng CH, Chan PM, Bhalerao R, Bennett MJ, Dinneny JR (2013) Endodermal ABA signaling promotes lateral root quiescence during salt stress in Arabidopsis seedlings. Plant Cell 25:324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fernandez AL, Sheaffer CC, Tautges NE, Putnam DH, Hunter MC (2019) Alfalfa, wildlife, and the environment, 2nd edn. National Alfalfa and Forage Alliance, St. Paul

    Google Scholar 

  • Fu CX, Hernandez T, Zhou CE, Wang ZY (2015) Alfalfa (Medicago sativa L.). Methods Mol Biol 1223:213–221

    Article  CAS  PubMed  Google Scholar 

  • Gao HB, Zhang TJ, Lv GY, Zhang GH, Wu XL, Li JR, Gong BB (2006) Effects of different compound substrates on growth, yield and fruit quality of cucumber. Int Symp Veg Saf Hum Health 856:173–180

    Google Scholar 

  • Gao Y, Long R, Kang J, Wang Z, Zhang T, Sun H, Li X, Yang Q (2018) Comparative proteomic analysis reveals that antioxidant system and soluble sugar metabolism contribute to salt tolerance in alfalfa (Medicago sativa L.) leaves. J Proteome Res 18:191–203

    PubMed  Google Scholar 

  • Han G, Yuan F, Guo J, Zhang Y, Sui N, Wang B (2019) AtSIZ1 improves salt tolerance by maintaining ionic homeostasis and osmotic balance in Arabidopsis. Plant Sci 285:55–67

    Article  CAS  PubMed  Google Scholar 

  • Hernández-Sánchez IE, Maruri-López I, Graether SP, Jiménez-Bremont JF (2017) In vivo evidence for homo-and heterodimeric interactions of Arabidopsis thaliana dehydrins AtCOR47, AtERD10, and AtRAB18. Sci Rep 7:1–13

    Article  Google Scholar 

  • Huang GT, Ma SL, Bai LP, Zhang L, Ma H, Jia P, Liu J, Zhong M, Guo ZF (2012) Signal transduction during cold, salt and drought stresses in plants. Mol Biol Rep 39:969–987

    Article  PubMed  Google Scholar 

  • Huang L, Zhang M, Jia J, Zhao X, Huang X, Ji E, Ni L, Jiang M (2018) An atypical late embryogenesis abundant protein OsLEA5 plays a positive role in ABA-induced antioxidant defense in Oryza Sativa L. Plant Cell Physiol 59:916–929

    Article  CAS  PubMed  Google Scholar 

  • Hundertmark M, Hincha DK (2008) LEA (late embryogenesis abundant) proteins and their encoding genes in Arabidopsis thaliana. BMC Genomics 9:1–22

    Article  Google Scholar 

  • Jespersen D, Yu J, Huang B (2017) Metabolic effects of acibenzolar-S-methyl for improving heat or drought stress in creeping bentgrass. Front Plant Sci 8:1224

    Article  PubMed  PubMed Central  Google Scholar 

  • Jia H, Wang X, Shi Y, Wu X, Wang Y, Liu J, Fang Z, Li C, Dong K (2020) Overexpression of Medicago sativa LEA 4-4 can improve the salt, drought, and oxidation resistance of transgenic Arabidopsis. PLoS One 15:e0234085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaplan F, Guy CL (2005) RNA interference of Arabidopsis beta-amylase8 prevents maltose accumulation upon cold shock and increases sensitivity of PSII photochemical efficiency to freezing stress. Plant J 44:730–743

    Article  CAS  PubMed  Google Scholar 

  • Kim HS, Lee JH, Kim JJ, Kim CH, Jun SS, Hong YN (2005) Molecular and functional characterization of CaLEA6, the gene for a hydrophobic LEA protein from Capsicum annuum. Gene 344:115–123

    Article  CAS  PubMed  Google Scholar 

  • Kovacs D, Kalmar E, Torok Z, Tompa P (2008) Chaperone activity of ERD10 and ERD14, two disordered stress-related plant proteins. Plant Physiol 147:381–390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar S, Trivedi PK (2018) Glutathione S-transferases: role in combating abiotic stresses including arsenic detoxification in plants. Front Plant Sci 9:751

    Article  PubMed  PubMed Central  Google Scholar 

  • Kumar M, Lee SC, Kim JY, Kim SJ, Aye SS, Kim SR (2014) Over-expression of dehydrin gene, OsDhn1, improves drought and salt stress tolerance through scavenging of reactive oxygen species in rice (Oryza sativa L.). J Plant Biol 57:383–393

    Article  CAS  Google Scholar 

  • Li X, Hou Y, Li M, Zhang F, Yi F, Kang J, Yang Q, Long R (2022) Overexpression of an ABA-inducible homeodomain-leucine zipper I gene MsHB7 confers salt stress sensitivity to alfalfa. Ind Crop Prod 177:114463

    Article  CAS  Google Scholar 

  • Liang Y, Xiong Z, Zheng J, Xu D, Zhu Z, Xiang J, Gan J, Raboanatahiry N, Yin Y, Li M (2016) Genome-wide identification, structural analysis and new insights into late embryogenesis abundant (LEA) gene family formation pattern in Brassica napus. Sci Rep 6:1–17

    CAS  Google Scholar 

  • Lim CW, Lim S, Baek W, Lee SC (2015) The pepper late embryogenesis abundant protein CaLEA1 acts in regulating abscisic acid signaling, drought and salt stress response. Physiol Plantarum 154:526–542

    Article  CAS  Google Scholar 

  • Lin S, Medina CA, Boge B, Hu J, Fransen S, Norberg S, Yu LX (2020) Identification of genetic loci associated with forage quality in response to water deficit in autotetraploid alfalfa (Medicago sativa L.). BMC Plant Biol 20:1–18

    Article  CAS  Google Scholar 

  • Liu C, Mao B, Ou S, Wang W, Liu L, Wu Y, Chu C, Wang X (2014) OsbZIP71, a bZIP transcription factor, confers salinity and drought tolerance in rice. Plant Mol Biol 84:19–36

    Article  CAS  PubMed  Google Scholar 

  • Luo D, Liu WX, Wang YR, Zhang JY, Liu ZP (2014) Development of a rapid one-step PCR protocol to distinguish between alfalfa (Medicago sativa) and sweet clover (Melilotus spp.) seeds. Seed Sci Technol 42:237–246

    Article  Google Scholar 

  • Luo D, Zhou Q, Wu YG, Chai XT, Liu WX, Wang YR (2019a) Full-length transcript sequencing and comparative transcriptomic analysis to evaluate the contribution of osmotic and ionic stress components towards salinity tolerance in the roots of cultivated alfalfa (Medicago sativa L.). BMC Plant Biol 19:1–20

    Article  Google Scholar 

  • Luo D, Wu YG, Liu J, Zhou Q, Liu WX, Wang YR (2019b) Comparative transcriptomic and physiological analyses of Medicago sativa L. indicates that multiple regulatory networks are activated during continuous ABA treatment. Int J Mol Sci 20:47

    Article  Google Scholar 

  • Luo D, Zhang X, Liu J, Wu YG, Zhou Q, Fang LF, Liu ZP (2022a) Drought-induced unknown protein 1 positively modulates drought tolerance in cultivated alfalfa (Medicago sativa L.). Crop J. https://doi.org/10.1016/j.cj.2022.05.013

  • Luo D, Liu J, Wu YG, Zhang X, Zhou Q, Fang LF, Liu ZP (2022b) NUCLEAR TRANSPORT FACTOR 2-LIKE improves drought tolerance by modulating leaf water loss in alfalfa (Medicago sativa L.). Plant J 112:429–450

    Article  CAS  PubMed  Google Scholar 

  • Lv A, Wen W, Fan N, Su L, Zhou P, An Y (2021a) Dehydrin MsDHN1 improves aluminum tolerance of alfalfa (Medicago sativa L.) by affecting oxalate exudation from root tips. Plant J 108:441–458

    Article  CAS  PubMed  Google Scholar 

  • Lv A, Su L, Wen W, Fan N, Zhou P, An Y (2021b) Analysis of the function of the alfalfa MsLEA-D34 gene in abiotic stress responses and flowering time. Plant Cell Physiol 62:28–42

    Article  CAS  PubMed  Google Scholar 

  • Mäkinen K, De S (2019) The significance of methionine cycle enzymes in plant virus infections. Curr Opin Plant Bio 50:67–75

    Article  Google Scholar 

  • Morton MJ, Awlia M, Al-Tamimi N, Saade S, Pailles Y, Negrão S, Tester M (2019) Salt stress under the scalpel–dissecting the genetics of salt tolerance. Plant J 97:148–163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muvunyi BP, Yan Q, Wu F, Min X, Yan ZZ, Kanzana G, Wang Y, Zhang J (2018) Mining late embryogenesis abundant (LEA) family genes in Cleistogenes songorica, a xerophyte perennial desert plant. Int J Mol Sci 19:3430

    Article  PubMed  PubMed Central  Google Scholar 

  • Nguyen PN, Tossounian MA, Kovacs DS, Thu TT, Stijlemans B, Vertommen D, Pauwels J, Gevaert K, Angenon G, Messens J, Tompa P (2020) Dehydrin ERD14 activates glutathione transferase Phi9 in Arabidopsis thaliana under osmotic stress. Biochim Biophys Acta Gen Subj 1864:129506

    Article  CAS  PubMed  Google Scholar 

  • Pan YQ, Guo H, Wang SM, Zhao B, Zhang JL, Ma Q, Yin HJ, Bao AK (2016) The photosynthesis, Na+/K+ homeostasis and osmotic adjustment of Atriplex canescens in response to salinity. Front Plant Sci 7:848

  • Pantelić A, Stevanović S, Komić SM, Kilibarda N, Vidović M (2022) In silico characterisation of the late embryogenesis abundant (LEA) protein families and their role in desiccation tolerance in Ramonda serbica Panc. Int J Mol Sci 23:3547

    Article  PubMed  PubMed Central  Google Scholar 

  • Park SC, Kim YH, Jeong JC, Kim CY, Lee HS, Bang JW, Kwak SS (2011) Sweetpotato late embryogenesis abundant 14 (IbLEA14) gene influences lignification and increases osmotic-and salt stress-tolerance of transgenic calli. Planta 233:621–634

    Article  CAS  PubMed  Google Scholar 

  • Rahimi A, Biglarifard A (2011) Impacts of NaCl stress on proline, soluble sugars, photosynthetic pigments and chlorophyll florescence of strawberry. Adv Environ Biol 5:617–623

    CAS  Google Scholar 

  • Shaheen S, Naseer S, Ashraf M, Akram NA (2013) Salt stress affects water relations, photosynthesis, and oxidative defense mechanisms in Solanum melongena L. J Plant Interact 8:85–96

    Article  CAS  Google Scholar 

  • Siddiqi EH, Ashraf M, Hussain M, Jamil A (2009) Assessment of intercultivar variation for salt tolerance in safflower (Carthamus tinctorius L.) using gas exchange characteristics as selection criteria. Pak J Bot 41:2251–2259

    CAS  Google Scholar 

  • Sun S, Hu C, Qi X, Chen J, Zhong Y, Muhammad A, Lin M, Fang J (2021) The AaCBF4-AaBAM3.1 module enhances freezing tolerance of kiwifruit (Actinidia arguta). Hortic Res 8:97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taïbi K, Taïbi F, Abderrahim LA, Ennajah A, Belkhodja M, Mulet JM (2016) Effect of salt stress on growth, chlorophyll content, lipid peroxidation and antioxidant defence systems in Phaseolus vulgaris L. S Afr J Bot 105:306–312

    Article  Google Scholar 

  • Tang L, Cai H, Zhai H, Luo X, Wang Z, Cui L, Bai X (2014) Overexpression of Glycine soja WRKY20 enhances both drought and salt tolerance in transgenic alfalfa (Medicago sativa L.). Plant Cell Tiss Org 118:77–86

    Article  CAS  Google Scholar 

  • Wang W, Liu JH (2016) CsPAO4 of Citrus sinensis functions in polyamine terminal catabolism and inhibits plant growth under salt stress. Sci Rep 6:1–15

    Google Scholar 

  • Wang W, Vinocur B, Shoseyov O, Altman A (2004) Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sci 9:244–252

    Article  CAS  PubMed  Google Scholar 

  • Wang XS, Zhu HB, Jin GL, Liu HL, Wu WR, Zhu J (2007) Genome-scale identification and analysis of LEA genes in rice (Oryza sativa L.). Plant Sci 172:414–420

    Article  CAS  Google Scholar 

  • Wang Z, Li H, Ke Q, Jeong JC, Lee HS, Xu B (2014a) Transgenic alfalfa plants expressing AtNDPK2 exhibit increased growth and tolerance to abiotic stresses. Plant Physiol Bioch 84:67–77

    Article  CAS  Google Scholar 

  • Wang G, Cai G, Kong F, Deng Y, Ma N, Meng Q (2014b) Overexpression of tomato chloroplast-targeted DnaJ protein enhances tolerance to drought stress and resistance to pseudomonas solanacearum in transgenic tobacco. Plant Physiol Bioch 82:95–104

    Article  CAS  Google Scholar 

  • Wang H, Wu Y, Yang X, Guo X, Cao X (2017) SmLEA2, a gene for late embryogenesis abundant protein isolated from salvia miltiorrhiza, confers tolerance to drought and salt stress in Escherichia coli and S. miltiorrhiza. Protoplasma 254:685–696

    Article  CAS  PubMed  Google Scholar 

  • Wang Q, Guo C, Li Z, Sun J, Deng Z, Wen L, Li X, Guo Y (2021) Potato NAC transcription factor StNAC053 enhances salt and drought tolerance in transgenic Arabidopsis. Int J Mol Sci 22:2568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu F, Muvunyi BP, Yan Q, Kanzana G, Ma T, Zhang Z, Wang Y, Zhang J (2022) Comprehensive genome-wide analysis of polyamine and ethylene pathway genes in Cleistogenes songorica and CsSAMDC2 function in response to abiotic stress. Environ Exp Bot 202:105029

    Article  CAS  Google Scholar 

  • Zegzouti H, Jones B, Marty C, Lelièvre JM, Latché A, Pech JC, Bouzayen M (1997) ER5, a tomato cDNA encoding an ethylene-responsive LEA-like protein: characterization and expression in response to drought, ABA and wounding. Plant Mol Biol 35:847–854

    Article  CAS  PubMed  Google Scholar 

  • Zhang Q, Ma C, Xue X, Xu M, Li J, Wu JX (2014) Overexpression of a cytosolic ascorbate peroxidase gene, OsAPX2, increases salt tolerance in transgenic alfalfa. J Integr Agr 13:2500–2507

    Article  CAS  Google Scholar 

  • Zhang JY, Duan Z, Zhang DY, Zhang JQ, Di HY, Wu F, Wang YR (2016) Co-transforming bar and CsLEA enhanced tolerance to drought and salt stress in transgenic alfalfa (Medicago sativa L.). Biochem Bioph Res Co 472:75–82

    Article  CAS  Google Scholar 

  • Zhao P, Liu F, Ma M, Gong J, Wang Q, Jia P, Zheng G, Liu H (2011) Overexpression of AtLEA3-3 confers resistance to cold stress in Escherichia coli and provides enhanced osmotic stress tolerance and ABA sensitivity in Arabidopsis thaliana. Mol Biol 45:785–796

    Article  CAS  Google Scholar 

  • Zheng G, Fan C, Di S, Wang X, Xiang C, Pang Y (2017) Over-expression of Arabidopsis EDT1 gene confers drought tolerance in alfalfa (Medicago sativa L.). front. Plant Sci 8:2125

    Google Scholar 

  • Zhou S, Sauvé RJ, Liu Z, Reddy S, Bhatti S, Hucko SD, Yong Y, Fish T, Thannhauser TW (2011) Heat-induced proteome changes in tomato leaves. J Am Soc Hortic Sci 136:219–226

    Article  CAS  Google Scholar 

  • Zhu JK (2000) Genetic analysis of plant salt tolerance using Arabidopsis. Plant Physiol 124:941–948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu JK (2002) Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 53:247–273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu JK (2016) Abiotic stress signaling and responses in plants. Cell 167:313–324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu X, Song F, Xu H (2010) Influence of arbuscular mycorrhiza on lipid peroxidation and antioxidant enzyme activity of maize plants under temperature stress. Mycorrhiza 20:325–332

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Key Research and Development Program of China (2022YFF1003200), the Inner Mongolia Seed Industry Science and Technology Innovation Major Demonstration Project (2022JBGS0040), the China Postdoctoral Science Foundation (2022M721442), the Fundamental Research Funds for the Central Universities (lzujbky-2022-pd07), and the National Natural Science Foundation of China (32271748 and 32201444).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhipeng Liu.

Ethics declarations

Competing interests

The authors report no declarations of interest.

Additional information

Responsible Editor: Ricardo Aroca.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(PDF 4835 kb)

ESM 2

(XLS 40 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, D., Zhang, X., Li, Y. et al. MsDIUP1 encoding a putative novel LEA protein positively modulates salt tolerance in alfalfa (Medicago sativa L.). Plant Soil 487, 547–566 (2023). https://doi.org/10.1007/s11104-023-05951-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-023-05951-6

Keywords

Navigation