Skip to main content
Log in

Sweetpotato late embryogenesis abundant 14 (IbLEA14) gene influences lignification and increases osmotic- and salt stress-tolerance of transgenic calli

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Late embryogenesis abundant 14 (LEA14) cDNA was isolated from an EST library prepared from dehydration-treated fibrous roots of sweetpotato (Ipomoea batatas). Quantitative RT-PCR revealed a variety of different IbLEA14 expression patterns under various abiotic stress conditions. IbLEA14 expression was strongly induced by dehydration, NaCl and abscisic acid treatments in sweetpotato plants. Transgenic sweetpotato non-embryogenic calli harboring IbLEA14 overexpression or RNAi vectors under the control of CaMV 35S promoter were generated. Transgenic calli overexpressing IbLEA14 showed enhanced tolerance to drought and salt stress, whereas RNAi calli exhibited increased stress sensitivity. Under normal culture conditions, lignin contents increased in IbLEA14-overexpressing calli because of the increased expression of a variety of monolignol biosynthesis-related genes. Stress treatments elicited higher expression levels of the gene encoding cinnamyl alcohol dehydrogenase in IbLEA14-overexpressing lines than in control or RNAi lines. These results suggest that IbLEA14 might positively regulate the response to various stresses by enhancing lignification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ABA:

Abscisic acid

CAD:

Cinnamyl alcohol dehydrogenase

CCAOMT:

Caffeoyl coenzyme A O-methyl-transferase

COMT:

Caffeic acid-O-methyl-transferase

C4H:

Cinnamate 4-hydroxylase

DW:

Dry weight

4CL:

4-Coumarate:coenzyme A ligase

LEA:

Late embryogenesis abundant

PAL:

Phenylalanine ammonia-lyase

WC:

Water content

SAMS:

s-Adenosyl-l-methionine synthetase

References

  • Amthor JS (2003) Efficiency of lignin biosynthesis: a quantitative analysis. Ann Bot (Lond) 91:673–695

    Article  CAS  Google Scholar 

  • Baker J, Steele C, Dure L III (1988) Sequence and characterization of 6 Lea proteins and their genes from cotton. Plant Mol Biol 11:277–291

    Article  CAS  Google Scholar 

  • Bartels D, Sunkar R (2005) Drought and salt tolerance in plants. Crit Rev Plant Sci 24:23–58

    Article  CAS  Google Scholar 

  • Battaglia M, Olvera-Carrillo Y, Garciarrubio A, Campos F, Covarrubias AA (2008) The enigmatic LEA proteins and other hydrophilins. Plant Physiol 148:6–24

    Article  CAS  PubMed  Google Scholar 

  • Boucher V, Buitink J, Lin X, Boudet J, Hoekstra FA, Hundertmark M, Renard D, Leprince O (2009) MtPM25 is an atypical hydrophobic late embryogenesis abundant protein that dissociates cold and desiccation-aggregated proteins. Plant Cell Environ 33:418–430

    Article  PubMed  Google Scholar 

  • Boudet AM (2000) Lignins and lignification: selected issues. Plant Physiol Biochem 38:81–96

    Article  CAS  Google Scholar 

  • Bray EA (1997) Plant responses to water deficit. Trends Plant Sci 2:48–54

    Article  Google Scholar 

  • Chakrabortee S, Boschetti C, Walton LJ, Sarkar S, Rubinsztein DC, Tunnacliffe A (2007) Hydrophilic protein associated with desiccation tolerance exhibits broad protein stabilization function. Proc Natl Acad Sci USA 104:18073–18078

    Article  CAS  PubMed  Google Scholar 

  • Chandra Babu R, Zhang J, Blum A, David Ho TH, Wu R, Nguyen HT (2004) HVA1 a LEA gene from barley confers dehydration tolerance in transgenic rice (Oryza sativa L.) via cell membrane protection. Plant Sci 166:855–862

    Article  Google Scholar 

  • Close TJ (1996) Dehydrins: emergence of a biochemical role of a family of plant dehydration proteins. Physiol Plant 97:795–803

    Article  CAS  Google Scholar 

  • Colmenero-Flores JM, Moreno LP, Smith CE, Covarrubias AA (1999) Pvlea-18, a member of a new late-embryogenesis-abundant protein family that accumulates during water stress and in the growing regions of well-irrigated bean seedlings. Plant Physiol 120:93–104

    Article  CAS  PubMed  Google Scholar 

  • Dunaeva M, Adamska I (2001) Identification of genes expressed in response to light stress in leaves of Arabidopsis thaliana using RNA differential display. Eur J Biochem 268:5521–5529

    Article  CAS  PubMed  Google Scholar 

  • Dure L, Greenway SC, Galau GA (1981) Developmental biochemistry of cotton seed embryogenesis and germination: changing messenger ribonucleic acid populations as shown by in vitro and in vivo protein synthesis. Biochemistry 20:4162–4168

    Article  CAS  PubMed  Google Scholar 

  • Eycken W, Engler J, Inzé D, Montagu M, Gheysen G (1996) A molecular study of root-knot nematode-induced feeding sites. Plant J 9:45–54

    Article  PubMed  Google Scholar 

  • Galau G, Wang H, Hughes DW (1993) Cotton Lea5 and Lea14 encode atypical late embryogenesis-abundant Proteins. Plant Physiol 101:695–696

    Article  CAS  PubMed  Google Scholar 

  • Gilles GJ, Hines KM, Manfre AJ, Marcotte WR Jr (2007) A predicted N-terminal helical domain of a Group 1 LEA protein is required for protection of enzyme activity from drying. Plant Physiol Biochem 45:389–399

    Article  CAS  PubMed  Google Scholar 

  • Goyal K, Walton LJ, Tunnacliffe A (2005) LEA proteins prevent protein aggregation due to water stress. Biochem J 388:151–157

    Article  CAS  PubMed  Google Scholar 

  • Grelet J, Benamar A, Teyssier E, Avelange-Macherel M-H, Grunwald D, Macherel D (2005) Identification in pea seed mitochondria of a late-embryogenesis abundant protein able to protect enzymes from drying. Plant Physiol 137:157–167

    Article  CAS  PubMed  Google Scholar 

  • Guenni O, Marín D, Baruch Z (2002) Responses to drought of five Brachiaria species I. Biomass production, leaf growth, root distribution, water use and forage quality. Plant Soil 243:229–241

    Article  CAS  Google Scholar 

  • Haaning S, Radutoiu S, Hoffmann SV, Dittmer J, Giehm L, Otzen DE, Stougaard J (2008) An unusual intrinsically disordered protein from the model legume Lotus japonicus stabilizes proteins in vitro. J Biol Chem 283:31142–31152

    Article  CAS  PubMed  Google Scholar 

  • Hara M, Fujinaga M, Kuboi T (2004) Radical scavenging activity and oxidative modification of citrus dehydrin. Plant Physiol Biochem 42:657–662

    Article  CAS  PubMed  Google Scholar 

  • Hatfield R, Fukushima RS (2005) Can lignin be accurately measured? Crop Sci 45:832–839

    Article  CAS  Google Scholar 

  • Hu Y, Li WC, Xu YQ, Li GJ, Liao Y, Fu FL (2009) Differential expression of candidate genes for lignin biosynthesis under drought stress in maize leaves. J Appl Genet 50:213–223

    Article  CAS  PubMed  Google Scholar 

  • Hughes DW, Galau GA (1989) Temporally modular gene expression during cotyledon development. Gene Dev 3:358–369

    Article  CAS  PubMed  Google Scholar 

  • Hundertmark M, Hincha D (2008) LEA (late embryogenesis abundant) proteins and their encoding genes in Arabidopsis thaliana. BMC Genomics 9:118

    Article  PubMed  Google Scholar 

  • Imai R, Chang L, Ohta A, Bray EA, Takagi M (1996) A lea-class gene of tomato confers salt and freezing tolerance when expressed in Saccharomyces cerevisiae. Gene 170:243–248

    Article  CAS  PubMed  Google Scholar 

  • Ingram J, Bartels D (1996) The molecular basis of dehydration tolerance in plants. Annu Rev Plant Physiol Plant Mol Biol 47:377–403

    Article  CAS  PubMed  Google Scholar 

  • Karimi M, Inzé D, Depicker A (2002) GATEWAY™ vectors for Agrobacterium-mediated plant transformation. Trends Plant Sci 7:193–195

    Article  CAS  PubMed  Google Scholar 

  • Kasuga M, Miura S, Shinozaki K, Yamaguchi-Shinozaki K (2004) A combination of the Arabidopsis DREB1A gene and stress-inducible rd29A promoter improved drought- and low temperature stress tolerance in tobacco by gene transfer. Plant Cell Physiol 4:346–350

    Article  Google Scholar 

  • Kim KY, Kwon SY, Lee HS, Hur Y, Bang JW, Kwak SS (2003) A novel oxidative stress-inducible peroxidase promoter from sweetpotato: molecular cloning and characterization in transgenic tobacco plants and cultured cells. Plant Mol Biol 51:831–838

    Article  CAS  PubMed  Google Scholar 

  • Kim HS, Lee JH, Kim JJ, Kim C-H, Jun S-S, Hong Y-N (2005) Molecular and functional characterization of CaLEA6, the gene for a hydrophobic LEA protein from Capsicum annuum. Gene 344:115–123

    Article  CAS  PubMed  Google Scholar 

  • Kim YH, Yang KS, Ryu SH, Kim KY, Song WK, Kwon SY, Lee HS, Bang JW, Kwak SS (2008) Molecular characterization of a cDNA encoding DRE-binding transcription factor from dehydration-treated fibrous roots of sweetpotato. Plant Physiol Biochem 46:196–204

    Article  CAS  PubMed  Google Scholar 

  • Kim SH, Song WK, Kim YH, Kwon SY, Lee HS, Lee IC, Kwak SS (2009) Characterization of full-length enriched expressed sequence tags of dehydration-treated white fibrous roots of sweetpotato. BMB Rep 42:271

    CAS  PubMed  Google Scholar 

  • Kimura M, Yamamoto YY, Seki M, Sakurai T, Sato M, Abe T, Yoshida S, Manabe K, Shinozaki K, Matsui M (2003) Identification of Arabidopsis genes regulated by high light-stress using cDNA microarray. Photochem Photobiol 77:226–233

    CAS  PubMed  Google Scholar 

  • Kovacs D, Kalmar E, Torok Z, Tompa P (2008) Chaperone activity of ERD10 and ERD14, two disordered stress-related plant proteins. Plant Physiol 147:381–390

    Article  CAS  PubMed  Google Scholar 

  • Kyte J, Doolittle RF (1982) A simple method for displaying the hydropathic character of a protein. J Mol Biol 157:105–132

    Article  CAS  PubMed  Google Scholar 

  • Lee BR, Kim KY, Jung WJ, Avice JC, Ourry A, Kim TH (2007) Peroxidases and lignification in relation to the intensity of water-deficit stress in white clover (Trifolium repens L.). J Exp Bot 58:1271–1279

    Article  CAS  PubMed  Google Scholar 

  • Lim S, Yang KS, Kwon SY, Paek KY, Kwak SS, Lee HS (2004) Agrobacterium-mediated genetic transformation and plant regeneration of sweetpotato (Ipomoea batatas). Kor J Plant Biotechnol 31:267–271

    Article  Google Scholar 

  • Maitra N, Cushman JC (1994) Isolation and characterization of a drought-induced soybean cDNA encoding a D95 family late embryogenesis abundant protein. Plant Physiol 106:805–806

    Article  CAS  PubMed  Google Scholar 

  • Mlícková K, Luhová L, Lebeda A, Mieslerová B, Pec P (2004) Reactive oxygen species generation and peroxidase activity during Oidium neolycopersici infection on Lycopersicon species. Plant Physiol Biochem 42:753–761

    Article  PubMed  Google Scholar 

  • Mlynárová L, Nap J-P, Bisseling T (2007) The SWI/SNF chromatin-remodeling gene AtCHR12 mediates temporary growth arrest in Arabidopsis thaliana upon perceiving environmental stress. Plant J 51:874–885

    Article  PubMed  Google Scholar 

  • Monties B, Fukushima K (2001) Occurrence, function and biosynthesis of lignin. In: Hofrichter M, Steinbuchel A (eds) Biopolymers. Lignin, humic substances and coal, Vol 1. Wiley, Weinheim, pp 1–64

  • Moura JCMS, Bonine CAV, JdOF Viana, Dornelas MC, Mazzafera P (2010) Abiotic and biotic stresses and changes in the lignin content and composition in plants. J Integr Plant Biol 52:360–376

    Article  CAS  PubMed  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Nakagawa T, Kurose T, Hino T, Tanaka K, Kawamukai M, Niwa Y, Toyooka K, Matsuoka K, Jinbo T, Kimura T (2007) Development of series of gateway binary vectors, pGWBs, for realizing efficient construction of fusion genes for plant transformation. J Biosci Bioeng 104:34–41

    Article  CAS  PubMed  Google Scholar 

  • Park S, Jun S-S, An G, Hong YN, Park M (2003) A comparative study on the protective role of trehalose and LEA proteins against abiotic stresses in transgenic Chinese cabbage (Brassica campestris) overexpressing CaLEA or otsA. J Plant Biol 46:277–286

    Article  CAS  Google Scholar 

  • Peever TL, Higgins VJ (1989) Electrolyte leakage, lipoxygenase, and lipid peroxidation induced in tomato leaf tissue by specific and nonspecific elicitors from Cladosporium fulvum. Plant Physiol 90:867–875

    Article  CAS  PubMed  Google Scholar 

  • Piatkowski D, Schneider K, Salamini F, Bartels D (1990) Characterization of five abscisic acid responsive cDNA clones isolated from the desiccation tolerant plant Craterostigma plantagineum and their relationship to other water-stress genes. Plant Physiol 94:1682–1688

    Article  CAS  PubMed  Google Scholar 

  • Sakuma Y, Maruyama K, Osakabe Y, Qin F, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2006) Functional analysis of an Arabidopsis transcription factor, DREB2A, involved in drought-responsive gene expression. Plant Cell 18:1292–1309

    Article  CAS  PubMed  Google Scholar 

  • Singh S, Cornilescu CC, Tyler RC, Cornilescu G, Tonelli M, Lee MS, Markley JL (2005) Solution structure of a late embryogenesis abundant protein (LEA14) from Arabidopsis thaliana, a cellular stress-related protein. Protein Sci 14:2601–2609

    Article  CAS  PubMed  Google Scholar 

  • Swire Clark GA, Marcotte WR (1999) The wheat LEA protein Em functions as an osmoprotective molecule in Saccharomyces cerevisiae. Plant Mol Biol 39:117–128

    Article  CAS  PubMed  Google Scholar 

  • Tai H, Tai G, Beardmore T (2005) Dynamic histone acetylation of late embryonic genes during seed germination. Plant Mol Biol 59:909–925

    Article  CAS  PubMed  Google Scholar 

  • Tunnacliffe A, Wise M (2007) The continuing conundrum of the LEA proteins. Naturwissenschaften 94:791–812

    Article  CAS  PubMed  Google Scholar 

  • Tunnacliffe A, Hincha D, Leprince O, Macherel D (2010) LEA proteins: versatility of form and function. In: Lubzens E, Cerda J, Clark M (eds) Dormancy and resistance in harsh environments. Springer, Berlin, pp 91–108

    Chapter  Google Scholar 

  • Verslues PE, Agarwal M, Katiyar-Agarwal S, Zhu J, Zhu J-K (2006) Methods and concepts in quantifying resistance to drought, salt and freezing, abiotic stresses that affect plant water status. Plant J 45:523–539

    Article  CAS  PubMed  Google Scholar 

  • Wise MJ, Tunnacliffe A (2004) POPP the question: what do LEA proteins do? Trends Plant Sci 9:13–17

    Article  CAS  PubMed  Google Scholar 

  • Yang L, Wang C, Guo W, Li X, Lu M, Yu C (2006) Differential expression of cell wall related genes in the elongation zone of rice roots under water deficit. Russ J Plant Physiol 53:390–395

    Article  CAS  Google Scholar 

  • Yin Z, Rorat T, Szabala BM, Ziólkowska A, Malepszy S (2006) Expression of a Solanum sogarandinum SK3-type dehydrin enhances cold tolerance in transgenic cucumber seedlings. Plant Sci 170:1164–1172

    Article  CAS  Google Scholar 

  • Yoshimura K, Masuda A, Kuwano M, Yokota A, Akashi K (2008) Programmed proteome response for drought avoidance/tolerance in the root of a C3 xerophyte (wild watermelon) under water deficits. Plant Cell Physiol 49:226–241

    Article  CAS  PubMed  Google Scholar 

  • Zegzouti H, Jones B, Marty C, Lelièvre J-M, Latché A, Pech J-C, Bouzayen M (1997) ER5, a tomato cDNA encoding an ethylene-responsive LEA-like protein: characterization and expression in response to drought, ABA and wounding. Plant Mol Biol 35:847–854

    Article  CAS  PubMed  Google Scholar 

  • Zhao L, Zhang F, Guo J, Yang Y, Li B, Zhang L (2004) Nitric oxide functions as a signal in salt resistance in the calluses from two ecotypes of reed. Plant Physiol 134:849–857

    Article  CAS  PubMed  Google Scholar 

  • Zhong R, Ye ZH (2007) Regulation of cell wall biosynthesis. Curr Opin Plant Biol 10:564–572

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to Dr. Tsuyoshi Nakagawa (Shimane University) for providing the vector PGWB12 and Dr. Sarah M. Assmann (Pennsylvania State University) for pH7GWIW2(I) vector. This work was supported by grants from the Biogreen21 Program (20070301034015), Rural Development Administration, Korea; Korea-China Joint Research Program, National Research Foundation of Korea (NRF); MEST and the KRIBB initiative program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sang-Soo Kwak.

Additional information

S.-C. Park and Y.-H. Kim contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, SC., Kim, YH., Jeong, J.C. et al. Sweetpotato late embryogenesis abundant 14 (IbLEA14) gene influences lignification and increases osmotic- and salt stress-tolerance of transgenic calli. Planta 233, 621–634 (2011). https://doi.org/10.1007/s00425-010-1326-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-010-1326-3

Keywords

Navigation