Skip to main content
Log in

Quantifying and visualizing Nitrospirillum amazonense strain CBAmC in sugarcane after using different inoculation methods

  • Methods paper
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background and Aims

Nitrospirillum amazonense strain CBAmC is a nitrogen-fixing bacterium that has been used for sugarcane inoculation. Despite its beneficial effects, however, little is known about the establishment and colonization of this microorganism in its inoculated host plant. Furthermore, alternative inoculation methods need to be tested in the sugarcane crop. The objective of the present work was to quantify and visualize CBAmC in sugarcane cultivar RB867515 after using three inoculation methods.

Methods

Utilizing one node as propagation material, three bacterial inoculation methods were tested under greenhouse conditions. For up to 60 days after inoculation (DAI), qPCR was used to quantify the bacterial loads in the plant or substrate while FISH-CLSM was used to confirm the establishment and colonization profile of CBAmC in different plant tissues.

Results

FISH-CLSM indicated that the CBAmC strain could establish itself on different tissues of sugarcane, especially roots. qPCR revealed variable bacterial loads in the plants inoculated according to the three methods tested. In addition, little or no bacterial loads were detected in the substrate a few days after inoculation, regardless of the method used.

Conclusions

N. amazonense CBAmC proves to be a bacterium that preferentially associates with the surface of the root tissues of sugarcane propagated by one node, instead of colonizing internal plant tissues or remaining in the soil. The inoculation method consisting of immersion of the mini-setts in bacterial suspension proved to be more efficient than the inoculation methods of applying the suspension onto the post-sprouting substrate or to the lowest leaf.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Key data supporting the findings of this study are available in the paper and in supplemental material published online. Cited data not shown in the paper or in the Online Resource material, unnecessary for understanding and reproducing the experiments, are available from the corresponding author, SS, upon request.

Notes

  1. Corn steep solids (CSS): 100 g in sufficient amount of H2O for 1000 mL.

References

  • Altschul SF, Gish W, Miller W et al (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  CAS  PubMed  Google Scholar 

  • Amann RI, Binder BJ, Olson RJ et al (1990) Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl Environ Microbiol 56:1919–1925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Assmus B, Hutzler P, Kirchhof G et al (1995) In situ localization of Azospirillum brasilense in the rhizosphere of wheat with fluorescently labeled, rRNA-targeted oligonucleotide probes and scanning confocal laser microscopy. Appl Environ Microbiol 61:1013–1019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baldani JI, Reis VM, Videira SS et al (2014) The art of isolating nitrogen-fixing bacteria from non-leguminous plants using N-free semi-solid media: a practical guide for microbiologists. Plant Soil 384:413–431

    Article  CAS  Google Scholar 

  • Bashan Y, Puente ME, Rodriguez-Mendoza MN et al (1995) Survival of Azospirillum brasilense in the bulk soil and rhizosphere of 23 soil types. Appl Environ Microbiol 61:1938–1945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Camelo A, Barreto CP, Vidal MS et al (2021) Field response of two seed propagated elephant grass genotypes to diazotrophic bacterial inoculation and in situ confocal microscopy colonization analyses. Symbiosis 83:41–53

    Article  CAS  Google Scholar 

  • Cardinale M, Luvisi A, Meyer JB et al (2018) Specific fluorescence in situ hybridization (FISH) test to highlight colonization of xylem vessels by Xylella fastidiosa in naturally infected olive trees (Olea europaea L.). Front Plant Sci 9:431

    Article  PubMed  PubMed Central  Google Scholar 

  • Chaves VA, dos Santos SG, Schultz N et al (2015) Initial development of two sugarcane varieties inoculated with diazotrophic bacteria. Revista Brasileira de Ciência do Solo 39:1595–1602

    Article  Google Scholar 

  • Costa RRGF, Quirino G, da Naves SF et al (2015) Efficiency of inoculant with Azospirillum brasilense on the growth and yield of second-harvest maize. Pesqui Agrop Trop 45:304–311

    Article  Google Scholar 

  • Daims H, Brühl A, Amann R et al (1999) The domain-specific probe EUB338 is insufficient for the detection of all Bacteria: development and evaluation of a more comprehensive probe set. Syst Appl Microbiol 22:434–444

    Article  CAS  PubMed  Google Scholar 

  • da Silva Girio LA, Ferreira Dias FL, Reis VM et al (2015) Plant growth-promoting bacteria and nitrogen fertilization effect on the initial growth of sugarcane from pre-sprouted seedlings. Pesquisa Agropecuária Brasileira 50:33–43

    Google Scholar 

  • de Santis Sica P, Shirata ES, Rios FA et al (2020) Impact of N-fixing bacterium Nitrospirillum amazonense on quality and quantitative parameters of sugarcane under field condition. Aust J Crop Sci 14:1870–1875

    Article  Google Scholar 

  • de Souza AP, Leite DC, Pattathil S et al (2013) Composition and structure of sugarcane cell wall polysaccharides: implications for second-generation bioethanol production. Bioenergy Res 6:564–579

    Article  CAS  Google Scholar 

  • Dos-Santos CM, Ribeiro NV, Schwab S et al (2021) The effect of inoculation of a diazotrophic bacterial consortium on the indigenous bacterial community structure of sugarcane apoplast fluid. Curr Microbiol 78:3079–3091

    Article  CAS  PubMed  Google Scholar 

  • Doyle JJ (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15

    Google Scholar 

  • England LS, Lee H, Trevors JT (1997) Persistence of Pseudomonas aureofaciens strains and DNA in soil. Soil Biol Biochem 29:1521–1527

    Article  CAS  Google Scholar 

  • Fernandes Júnior AR, Ganem Júnior E, de Marchetti J, Urashima LBL (2010) Avaliação de diferentes tratamentos térmicos no controle do raquitismo-da-soqueira em cana-de-açúcar. Trop Plant Pathol 35:060–064

    Article  Google Scholar 

  • Ferreira NS, Matos GF, Meneses CHSG et al (2020) Interaction of phytohormone-producing rhizobia with sugarcane mini-setts and their effect on plant development. Plant Soil 451:221–238

    Article  CAS  Google Scholar 

  • Fischer D, Pfitzner B, Schmid M et al (2012) Molecular characterisation of the diazotrophic bacterial community in uninoculated and inoculated field-grown sugarcane (Saccharum sp.). Plant Soil 356:83–99

    Article  CAS  Google Scholar 

  • Franco AA, Döbereiner J (1967) Especificidade hospedeira na simbiose com rhizobium-feijão e influência de diferentes nutrientes. Pesqui Agrop Brasileira 2:467–474

    Google Scholar 

  • Fukami J, Nogueira MA, Araujo RS, Hungria M (2016) Accessing inoculation methods of maize and wheat with Azospirillum brasilense. AMB Express 6:3. https://doi.org/10.1186/s13568-015-0171-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gault R, Bernardi A, Thompson J et al (1994) Studies on alternative means of legume inoculation: appraisal of application of inoculant suspended in irrigation water (water-run inoculation). Aust J Exp Agric 34:401–409

    Article  Google Scholar 

  • Greuter D, Loy A, Horn M, Rattei T (2016) Probebase—an online resource for rRNA-targeted oligonucleotide probes and primers: new features 2016. Nucleic Acids Res 44:D586–D589

    Article  CAS  PubMed  Google Scholar 

  • Hartmann A, James EK, De Bruijn FJ et al (2015) In situ localization and strain-specific quantification of Azospirillum and other diazotrophic plant growth-promoting rhizobacteria using antibodies and molecular probes. In: Cassán FD, Okon Y, Creus CM et al (eds) Handbook for Azospirillum: technical issues and protocols. Springer International Publishing Switzerland, Cham, pp 45–64

    Chapter  Google Scholar 

  • Huang X (1992) A contig assembly program based on sensitive detection of fragment overlaps. Genomics 14:18–25

    Article  CAS  PubMed  Google Scholar 

  • James EK, Reis VM, Olivares FL et al (1994) Infection of sugar cane by the nitrogen-fixing bacterium Acetobacter diazotrophicus. J Exp Bot 45:757–766

    Article  CAS  Google Scholar 

  • James EK, Gyaneshwar P, Mathan N et al (2002) Infection and colonization of rice seedlings by the plant growth-promoting bacterium Herbaspirillum seropedicae Z67. Mol Plant-Microbe Interact 15:894–906

    Article  CAS  PubMed  Google Scholar 

  • Kurihara D, Mizuta Y, Sato Y, Higashiyama T (2015) ClearSee: a rapid optical clearing reagent for whole-plant fluorescence imaging. Development 142:4168–4179

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kyselková M, Kopeckỳ J, Frapolli M et al (2009) Comparison of rhizobacterial community composition in soil suppressive or conducive to tobacco black root rot disease. ISME J 3:1127–1138

    Article  PubMed  Google Scholar 

  • Magalhães FM, Baldani JI, Souto SM et al (1983) A new acid-tolerant Azospirillum species. An Acad Bras Ciências 55:417–430

    Google Scholar 

  • Mahmood A, Turgay OC, Farooq M, Hayat R (2016) Seed biopriming with plant growth promoting rhizobacteria: a review. FEMS Microbiol Ecol 92:fiw112

  • Manz W, Amann R, Ludwig W et al (1992) Phylogenetic oligodeoxynucleotide probes for the major subclasses of proteobacteria: problems and solutions. Syst Appl Microbiol 15:593–600

    Article  Google Scholar 

  • Martins DS, Reis VM, Schultz N et al (2020) Both the contribution of soil nitrogen and of biological N2 fixation to sugarcane can increase with the inoculation of diazotrophic bacteria. Plant and Soil 454:155–169

    Article  CAS  Google Scholar 

  • Njoloma JP, Oota M, Saeki Y, Akao S (2005) Detection of gfp expression from gfp-labelled bacteria spot inoculated onto sugarcane tissues. Afr J Biotechnol 4:1372–1377

    CAS  Google Scholar 

  • Oliveira AL, Canuto EL, Silva EE et al (2004) Survival of endophytic diazotrophic bacteria in soil under different moisture levels. Braz J Microbiol 35:295–299

    Article  Google Scholar 

  • Oliveira ALM, Canuto EL, Urquiaga S et al (2006) Yield of micropropagated sugarcane varieties in different soil types following inoculation with diazotrophic bacteria. Plant Soil 284:23–32. https://doi.org/10.1007/s11104-006-0025-0

    Article  CAS  Google Scholar 

  • Oliveira ALM, Stoffels M, Schmid M et al (2009) Colonization of sugarcane plantlets by mixed inoculations with diazotrophic bacteria. Eur J Soil Biol 45:106–113

    Article  CAS  Google Scholar 

  • Oliveira ALM, Urquiaga S, Döbereiner J, Baldani JI (2002) The effect of inoculating endophytic N2-fixing bacteria on micropropagated sugarcane plants. Plant Soil 242:205–215. https://doi.org/10.1023/A:1016249704336

    Article  CAS  Google Scholar 

  • Pereira W, Oliveira RP, Pereira A et al (2021) Nitrogen acquisition and 15 N-fertiliser recovery efficiency of sugarcane cultivar RB92579 inoculated with five diazotrophs. Nutr Cycl Agrosyst 119:37–50

    Article  CAS  Google Scholar 

  • Pereira W, Sousa JS, Schultz N, Reis VM (2019) Sugarcane productivity as a function of nitrogen fertilization and inoculation with diazotrophic plant growth-promoting bacteria. Sugar Tech 21:71–82. https://doi.org/10.1007/s12355-018-0638-7

    Article  CAS  Google Scholar 

  • Pujol M, Badosa E, Manceau C, Montesinos E (2006) Assessment of the environmental fate of the biological control agent of fire blight, Pseudomonas fluorescens EPS62e, on apple by culture and real-time PCR methods. Appl Environ Microbiol 72:2421–2427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • R Development Core Team (2008) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

  • Reis VM, Olivares FL, de Oliveira ALM et al (1999) Technical approaches to inoculate micropropagated sugar cane plants were Acetobacter diazotrophicus. Plant and Soil 206:205–211

    Article  Google Scholar 

  • Reis Júnior FB dos, da Silva LG, Reis VM, Döbereiner J (2000) Ocorrência de bactérias diazotróficas em diferentes genótipos de cana-de-açúcar. Pesqui Agrop Brasileira 35:985–994

  • Reis V, Rios FA, Braz GBP et al (2020) Agronomic performance of sugarcane inoculated with Nitrospirillum amazonense (BR11145). Rev Caatinga 33:918–926

    Article  Google Scholar 

  • Rilling J, Acuña J, Nannipieri P et al (2019) Current opinion and perspectives on the methods for tracking and monitoring plant growth–promoting bacteria. Soil Biol Biochem 130:205–219

    Article  CAS  Google Scholar 

  • Rocha I, Ma Y, Souza-Alonso P et al (2019) Seed coating: a tool for delivering beneficial microbes to agricultural crops. Front Plant Sci 10:1357

  • Rodrigues EP, Rodrigues LS, Oliveira ALM et al (2008) Azospirillum amazonense inoculation: effects on growth, yield and N2 fixation of rice (Oryza sativa L.). Plant Soil 302:249–261. https://doi.org/10.1007/s11104-007-9476-1

    Article  CAS  Google Scholar 

  • Ruppel S, Rühlmann J, Merbach W (2006) Quantification and localization of bacteria in plant tissues using quantitative real-time PCR and online emission fingerprinting. Plant Soil 286:21–35

    Article  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Santos MS, Nogueira MA, Hungria M (2019) Microbial inoculants: reviewing the past, discussing the present and previewing an outstanding future for the use of beneficial bacteria in agriculture. Amb Express 9:1–22

    Article  Google Scholar 

  • Schena L, Ippolito A (2003) Rapid and sensitive detection of Rosellinia necatrlxin roots and soils by real time scorpion-PCR. J Plant Pathol 85:15–25

    CAS  Google Scholar 

  • Schultz N, de Morais RF, da Silva JA et al (2012) Agronomic evaluation of varieties of sugar cane inoculated with diazotrophic bacteria and fertilized with nitrogen. Pesquisa Agropecuária Brasileira 47:261–268

    Article  Google Scholar 

  • Schultz N, da Silva JA, Sousa JS et al (2014) Inoculation of sugarcane with diazotrophic bacteria. Revista Brasileira de Ciência do Solo 38:407–414

    Article  Google Scholar 

  • Schwab S, Terra LA, Baldani JI (2018) Genomic characterization of Nitrospirillum amazonense strain CBAmC, a nitrogen-fixing bacterium isolated from surface-sterilized sugarcane stems. Mol Genet Genomics 293:997–1016. https://doi.org/10.1007/s00438-018-1439-0

    Article  CAS  PubMed  Google Scholar 

  • Soares IC, Pacheco RS, da Silva CGN et al (2021) Real-time PCR method to quantify Sp245 strain of Azospirillum baldaniorum on Brachiaria grasses under field conditions. Plant Soil 1–14. https://doi.org/10.1007/s11104-021-05137-y

  • Stets MI, Alqueres SMC, Souza EM et al (2015) Quantification of Azospirillum brasilense FP2 bacteria in wheat roots by strain-specific quantitative PCR. Appl Environ Microbiol 81:6700–6709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stoffels M, Castellanos T, Hartmann A (2001) Design and application of new 16S rRNA-targeted oligonucleotide probes for the Azospirillum-Skermanella-Rhodocista-Cluster. Syst Appl Microbiol 24:83–97

    Article  CAS  PubMed  Google Scholar 

  • Udvardi MK, Czechowski T, Scheible W-R (2008) Eleven golden rules of quantitative RT-PCR. Plant Cell 20:1736–1737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the authors’ institutions: Basf S.A. and Embrapa Agrobiologia.

Author information

Authors and Affiliations

Authors

Contributions

SS: conceptualization, formal analysis, investigation, project administration, supervision, writing – original draft, review & editing; ESH: conceptualization, project administration, resources, supervision; JRCR: formal analysis, writing – original draft; JCAA, CGNS, JPF, LVS: investigation; LFMR, JIB, VMR: conceptualization, writing – review & editing.

Corresponding author

Correspondence to S. Schwab.

Ethics declarations

Competing interest

The authors have no competing interest to declare.

Additional information

Responsible Editor: Euan K. James.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Online Resource 1

(XLSX 7.76 KB)

Online Resource 2

(XLSX 6.53 KB)

Online Resource 3

(PDF 314 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schwab, S., Hirata, E.S., Amaral, J.C.A. et al. Quantifying and visualizing Nitrospirillum amazonense strain CBAmC in sugarcane after using different inoculation methods. Plant Soil 488, 197–216 (2023). https://doi.org/10.1007/s11104-023-05940-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-023-05940-9

Keywords

Navigation