Skip to main content
Log in

Quantification and Localization of Bacteria in Plant Tissues Using Quantitative Real-Time PCR and Online Emission Fingerprinting

  • Original Paper
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

In order to quantify and localize specific bacterial target genes in plant tissue, this project has generated relevant new insights in the combined application of quantitative real-time PCR in parallel with the in situ PCR + probe-hybridization and online emission fingerprinting using LSM 510 META. After designing an Enterobacter radicincitans species-specific probe, introduced bacterial cells were monitored in growing plant parts and their colonization behaviour was examined in relation to the native bacterial community. For this purpose, the plant growth-promoting rhizobacterial (PGPR) strain Enterobacter radicincitans was applied to Brassica oleracea plants in increasing inoculum concentrations 107, 108 and 109 cells per plant. Inoculation of 109 E. radicincitans cells per plant to Brassica oleracea leaves and roots resulted in significant increases of root, leaf and tuber growth. Total bacterial cell numbers were estimated using quantitative real-time PCR to be between 107 and 109 cells g−1 fresh leaf weight and about 108 cells g−1 fresh root weight of Brassica oleracea plants. Using quantitative real-time PCR, a significant colonization of Brassica oleracea leaves and roots with E. radicincitans cells was measured. Roots were colonized with a density of 107 cells g−1 fresh root weight up to at least 14 days after inoculation. That is equivalent to a proportion of E. radicincitans 16S rDNA-gene copy numbers compared to the total bacterial communities of about 10–16%. Online emission fingerprinting established that the introduced bacteria proliferated on and inside the root and that they colonized the intercellular spaces of the root cortex layer. Hence, E. radicincitans was able to successfully compete with the native bacterial population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amann RI, Binder BJ, Olson RJ, Chisholm SW, Devereux R, Stahl DA (1990) Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl Environ Microbiol 56:1919–1925

    PubMed  CAS  Google Scholar 

  • Antón J, Llobert-Brossa E, Rodríguenz-Valera F, Amann R (1999) Fluorescence in situ hybridization analysis of the prokaryotic community inhabiting crystallizer ponds. Environ Microbiol 1:517–523

    Article  PubMed  Google Scholar 

  • Aßmus B, Schloter M, Kirchhof G, Hutzler P, Hartmann A (1997) Improved in situ tracking of rhizosphere bacteria using dual staining with fluorescence-labeled antibosies and rRNA-targeted oligonucleotides. Microb Ecol 33:32–40

    Article  PubMed  Google Scholar 

  • Beattie GA, Lindow SE (1994) Comparison of the behaviour of epiphytic fitness mutants of Pseudomonas syringae under controlled and field conditions. Appl Environ Microbiol 60:3799–3808

    PubMed  Google Scholar 

  • Boeckman F, Hamby K, Tan L (2000a) The iCycler iQ detection system for TaqMan® assays. Application note 2568, Bio-Rad Laboratories, Alfred Nobel Drive, Hercules, CA 94547, USA

  • Boeckman F, Hamby K, Tan L (2000b) Real-time PCR using the iCycler iQ detection system and intercalation dyes. Application note 2567, Bio-Rad Laboratories, Alfred Nobel Drive, Hercules, CA 94547, USA

  • Burdman S, Jurkevich E, Okon Y (2000) Recent advances in the use of plant growth promoting rhizobacteria (PGPR) in agriculture. In: Subba Rao NS, Dommergues YR (eds) Microbial interactions in agriculture and forestry (Volume II). Science Publishers Inc., Plymouth, UK, pp 229–250

    Google Scholar 

  • Chatzinotas A, Sandaa R-A, Schönhuber W, Amann R, Daae FL, Torsvik V, Zeyer J, Hahn D (1998) Analysis of broad-scale differences in microbial community composition of two pristine forest soils. Syst Appl Microbiol 21:579–587

    PubMed  CAS  Google Scholar 

  • Daims H, Ramsing NB, Schleifer K-H, Wagner M (2001) Cultivation-independent, semiautomatic determination of absolute bacterial cell numbers in environmental samples by fluorescence in situ hybridization. Appl Environ Microbiol 67:5810–5818

    Article  PubMed  CAS  Google Scholar 

  • Dobbelaere S, Vanderleyden J, Okon Y (2003) Plant growth-promoting effects of diazotrophs in the rhizosphere. Crit Rev Plant Sci 22:107–149

    CAS  Google Scholar 

  • Ferguson CMJ, Booth NA, Allan EJ (2000) An ELISA for the detection of Bacillus subtilis L-form bacteria confirms their symbiosis in strawberry. Lett Appl Microbiol 31:390–394

    Article  PubMed  CAS  Google Scholar 

  • Franke IH, Fegan M, Hayward C, Leonard G, Sly LI (2000) Molecular detection of Gluconacetobacter saccheri associated with the pink sugarcane mealybug Saccharicoccus sacchari (Cockerell) and the sugarcane leaf sheath microenvironment by FISH and PCR. FEMS Microbiol Ecol 31:61–71

    Article  PubMed  CAS  Google Scholar 

  • Gardener BB McS, Weller DM (2001) Changes in populations of rhizosphere bacteria associated with take-all disease of wheat. Appl Environ Microbiol 67:4414–4425

  • Göhler F, Drews M (1986) Hydroponische Verfahren bei der Gemüseproduktion in Gewächshäusern. IGA Empfehlungen für die Praxis. 54 S. agrabuch, Leipzig

  • Hein I, Lehner A, Rieck P, Klein K, Brandl E, Wagner M (2001) Comparison of different approaches to quantify Staphylococcus aureus cells by real-time quantitative PCR and application of this technique for examination of cheese. Appl Environ Microbiol 67:3122–3126

    Article  PubMed  CAS  Google Scholar 

  • Hirano SS, Upper CD (1995) Ecology of ice nucleation-active bacteria. In: Lee RE, Warren GJ, Gusta LV (eds) Biological ice nucleation and its application. APS press, St. Paul, MN, pp 41–61

    Google Scholar 

  • Höflich G, Glante F, Liste H-H, Weise I, Ruppel S, Scholz-Seidel C (1992) Phytoeffective combination effects of symbiotic and associative microorganisms on legumes. Symbiosis 14:427–438

    Google Scholar 

  • Hoshino T, Noda N, Tsuneda S, Hirata A, Inamori Y (2001) Direct detection by in situ PCR of the amoA gene in biofilm resulting from a nitrogen removal process. Appl Environ Microbiol 67:5261–5266

    Article  PubMed  CAS  Google Scholar 

  • James EK, Gyaneshwar P, Mathan N, Barraquio L, Reddy PM, Iannetta PM, Olivares FL, Ladha JK (2002) Infection and colonization of rice seedlings by the plant growth-promoting bacterium Herbaspirillum seropedicae Z67. Mol Plant Microbe Interact 15:894–906

    PubMed  CAS  Google Scholar 

  • Jansson JK (2003) Marker and reporter genes: illuminating tools for environmental microbiologists. Curr Opin Microbiol 6:310–316

    Article  PubMed  CAS  Google Scholar 

  • Kämpfer P, Ruppel S, Remus R (2005) Enterobacter radicincitans sp. nov., a plant growth promoting species of the family Enterobacteriaceae. Syst Appl Microbiol 28:213–221

    Article  PubMed  Google Scholar 

  • Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Wiley, Chichester, England, pp 205–248

    Google Scholar 

  • Liobet-Brossa E, Rossellơ-Mora R, Amann R (1998) Microbial community composition of wadden sea sediments as revealed by fluorescence in situ hybridization. Appl Environ Microbiol 64:2691–2696

    Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔC T method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  • Lübeck PS, Hansen M, Sorensen J (2000) Simultaneous detection of the establishment of seed-inoculated Pseudomonas fluorescens strain DR54 and native soil bacteria on sugar beet root surfaces using fluorescence antibody and in situ hybridization techniques. FEMS Microbiol Ecol 33:11–19

    PubMed  Google Scholar 

  • Lyons SR, Griffen AL, Leys EJ (2000) Quantitative real-time PCR for Porphyromonas gingivalis and total bacteria. J Clin Microbiol 38:2362–2365

    PubMed  CAS  Google Scholar 

  • Mogge B, Loferer C, Agerer R, Hutzler P, Hartmann A (2000) Bacterial community structure and colonization patterns of Fagus sylvatica L. ectomycorrhizospheres as determined by fluorescence in situ hybridization and confocal laser scanning microscopy. Mycorrhiza 9:271–278

    Article  Google Scholar 

  • Ovreas L, Torsvik V (1998) Microbial diversity and community structure in two different agricultural soil communities. Microbial Ecol 36:303–315

    Article  CAS  Google Scholar 

  • Perebityk AN, Puchko VN (1989) Survival and distribution of bacterial population in the rhizosphere of inoculated plants. In: Vancura V, Kunc F (eds) Interrelationships between microorganisms and plants in soil. Elsvier Science Publishers, Amsterdam, The Netherlands, pp 223–227

    Google Scholar 

  • Pickup RW (1991) Development of molecular methods for the detection of specific bacteria in the environment. J␣Gen Microbiol 137:1009–1019

    CAS  Google Scholar 

  • Rosado AS, Duarte GF, Seldin L, VanElsas JD (1997) Molecular microbial ecology – A minireview. Rev Microbiol 28:135–147

    CAS  Google Scholar 

  • Rothballer M, Schmid M, Fekete A, Hartmann A (2005) Comparative in situ analysis of ipdC-gfpmut3 promoter fusions of Azospirillum brasilense strains Sp7 and Sp245. Environ Microbiol 7:1839–1846

    Article  PubMed  CAS  Google Scholar 

  • Rothballer M, Schmid M, Hartmann A (2003) In situ localization and PGPR-effect of Azospirillum brasilense strains colonizing roots of different wheat varieties. Symbiosis 34:261–279

    Google Scholar 

  • Ruppel S, Merbach W (1995) Effects of different nitrogen sources on nitrogen fixation and bacterial growth of Pantoea agglomerans and Azospirillum spp. in bacterial pure culture: an investigation using 15N2 and acetylene incubation. Microbiol Res 150:1–10

    Google Scholar 

  • Ruppel S, Hecht-Buchholz Ch, Remus R, Ortmann U, Schmelzer R (1992) Settlement of a diazotrophic, phytoeffective bacterial strain – Pantoea agglomerans – on winter wheat: an investigation using ELISA and transmission electron microscopy. Plant Soil 145:261–273

    Article  Google Scholar 

  • Ruppel S, Höflich G, Remus R (1999) Role of diazotrophic bacteria in plant nutrition. In: Narula N (ed) Azotobacter in sustainable agriculture. CBS Publishers & Distributors, Darya Ganji, New Delhi, India, pp 124–135

    Google Scholar 

  • Schilling G, Gransee A, Deubel A, Lezovic G, Ruppel S (1998) Phosphorous availability, root exudates, and microbial activity in the rhizosphere. J Plant Nutr Soil Sci 161:465–478

    CAS  Google Scholar 

  • Scholz-Seidel C, Ruppel S (1992) Nitrogenase- and phytohormone activities of Pantoea agglomerans in culture and their reaction in combination with wheat plants. Zbl Mikrobiol 147:319–328

    CAS  Google Scholar 

  • Snaidr J, Amann R, Huber I, Ludwig W, Schleifer K-H (1997) Phylogenetic analysis and in situ identification of bacteria in activated sludge. Appl Environ Microbiol 63:2884–2896

    PubMed  CAS  Google Scholar 

  • Sørensen J (2005) Direct microscopy in the rhizosphere microbial community – recent developments and perspectives. In: Hartmann A, Schmidt M, Wenzel W, Hisinger Ph (eds) GSF-Bericht 05/05, GSF-Forschungszentrum für Umwelt und Gesundheit, GmbH, Neuherberg, pp 247–251

  • StatSoft, Incorporation (2001) STATISTICA for Windows (Software-System) Version 6. www.statsoft.com

  • Steenhoudt O, Vanderleyden J (2000) Azospirillum, a free-living nitrogen-fixing bacterium closely associated with grasses: genetic, biochemical and ecological aspects. FEMS Microbiol Rev 24:487–506

    Article  PubMed  CAS  Google Scholar 

  • Stubner S (2002) Enumeration of 16S rDNA of Desulfotomaculum lineage 1 in rice field soil by real-time PCR with SybrGreen™ detection. J Microbiol Methods 50:155–164

    Article  PubMed  CAS  Google Scholar 

  • Tani K, Muneta M, Nakamura K, Shibuya K, Nasu M (2002) Monitoring of Ralstonia eutropha KT1 in groundwater in an experimental bioaugmentation field by in situ PCR. Appl Environ Microbiol 68:412–416

    Article  PubMed  CAS  Google Scholar 

  • Torsvik V, Sorheim R, Goksoyr J (1996) Total bacterial diversity in soil and sediment communities – A review. J Industr Microbiol 17:170–178

    Article  CAS  Google Scholar 

  • Weisburg WG, Barns SM, Pelletier A, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703

    PubMed  CAS  Google Scholar 

  • Wulf A, Manthey K, Doll J, Perlick A, Franken P, Linke B, Meyer F, Kuester H, Krajinski F (2003) Detection of highly specific transcriptional changes of the model plant Medicago truncatula in response to arbuscular mycorrhiza development. Mol Plant Microbe Interact 16:306–314

    PubMed  CAS  Google Scholar 

  • Yin JL, Shackel NS, Zekry A, McGuinnes PH, Richards C, Van der Putten K, McCaughan GW, Eris JM, Bishop GA (2001) Real-time reverse transcriptase-polymerase chain reaction (RT-PCR) for measurement of cytokinine and growth factor mRNA expression with fluorogenic probes or SYBR Green I. Immunol Cell Biol 79:213–221

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We sincerely thank Birgit Wernitz for her laboratory work. We would also like to thank Dr. Ruth Willmott for her editorial support and English-language editing (http://www.bioscript.de).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silke Ruppel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ruppel, S., Rühlmann, J. & Merbach, W. Quantification and Localization of Bacteria in Plant Tissues Using Quantitative Real-Time PCR and Online Emission Fingerprinting. Plant Soil 286, 21–35 (2006). https://doi.org/10.1007/s11104-006-9023-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-006-9023-5

Keywords

Navigation