Skip to main content

Advertisement

Log in

Soil properties and geomorphic processes influence vegetation composition, structure, and function in the Cerrado Domain

  • Marschner Review
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background

The Cerrado of central Brazil—the world’s largest Neotropical savanna – is comprised of a mosaic of highly heterogeneous vegetation growing on an extremely diverse geologic and geomorphologic background. Geomorphic processes under stable tectonic and climatic conditions facilitated the development of diverse edaphic properties, which interact with disturbance events to form unique vegetation types.

Scope

In this review, we detail how the geophysical environment affects soil formation and evaluate the mechanisms through which edaphic conditions control vegetation structure, floristic diversity and functional diversity.

Conclusion

The influence of geomorphic processes on edaphic properties has a marked impact on the ecology and evolution of plant communities. Species exhibit morphological and physiological adaptations that optimise their successful establishment in particular soil conditions. Furthermore, fire disturbance alters these soil-vegetation associations further regulating the structural nature of these communities. Therefore, we propose an integrative view where edaphic, chemical and physical properties act as modulators of vegetation stands, and these conditions interact with the fire regime. The knowledge of plant edaphic niches, their functional traits related to resource acquisition and use, as well as the interaction of edaphic properties and disturbance regimes is paramount to research planning, conservation, and successful restoration of the full diversity of Cerrado vegetation types.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data Availability

The datasets analysed during the current study are available in the NeoTropTree repository (http://www.neotroptree.info/).

References

  • Abrahão A, de Costa P, B, Lambers H, et al (2019) Soil types select for plants with matching nutrient-acquisition and -use traits in hyperdiverse and severely nutrient-impoverished campos rupestres and cerrado in Central Brazil. J Ecol 107:1302–1316

    Article  Google Scholar 

  • Abrahão A, de Britto CP, Teodoro GS et al (2020) Vellozioid roots allow for habitat specialization among rock- and soil-dwelling Velloziaceae in campos rupestres. Funct Ecol 34:442–457

    Article  Google Scholar 

  • Abrahão A, Lambers H, Sawaya ACHF et al (2014) Convergence of a specialized root trait in plants from nutrient-impoverished soils: phosphorus-acquisition strategy in a nonmycorrhizal cactus. Oecologia 176:345–355

    Article  PubMed  Google Scholar 

  • Abreu MF, Pinto JRR, Maracahipes L et al (2012) Influence of edaphic variables on the floristic composition and structure of the tree-shrub vegetation in typical and rocky outcrop cerrado areas in Serra Negra, Goiás State, Brazil. Brazilian J Botany 35:259–272

    Article  Google Scholar 

  • Ab’Sáber AN (2003) Os domínios de natureza no Brasil: potencialidades paisagísticas. Atelie Editorial

  • Ackerly DD, Cornwell WKK (2007) A trait-based approach to community assembly: Partitioning of species trait values into within- and among-community components. Ecol Lett 10:135–145. https://doi.org/10.1111/j.1461-0248.2006.01006.x

    Article  CAS  PubMed  Google Scholar 

  • Albornoz FE, Dixon KW, Lambers H (2021) Revisiting mycorrhizal dogmas: Are mycorrhizas really functioning as they are widely believed to do? Soil Ecol Lett 3:73–82

    Article  CAS  Google Scholar 

  • Alkmim FF (2015) Geological background: a tectonic panorama of Brazil. In: Vieira BC, Salgado AAR, Santos LJC (eds) Landscapes and landforms of Brazil. Springer, Dordrecht, pp 9–17

    Google Scholar 

  • Alkmim FF, Reis HLS (2021) Brazil and the Guianas. Encycl Geol 27–46

  • Amaral AG, Bijos NR, Moser P, Munhoz CBR (2021) Spatially structured soil properties and climate explain distribution patterns of herbaceous-shrub species in the Cerrado. Plant Ecol. https://doi.org/10.1007/s11258-021-01193-7

    Article  Google Scholar 

  • Araujo ASF, Melo VMM, de Pereira AP, A, et al (2021) Arbuscular mycorrhizal community in soil from different Brazilian Cerrado physiognomies. Rhizosphere 19

    Article  Google Scholar 

  • Arens K (1958) O Cerrado como Vegetação Oligotrófica. Boletim da Faculdade de Filosofia, Ciências e Letras, Universidade de São Paulo. Botânica 15:59

  • Arruda DM, Fernandes-Filho EI, Solar RRC, Schaefer CEGR (2017) Combining climatic and soil properties better predicts covers of Brazilian biomes. Naturwissenschaften 104:32

    Article  PubMed  Google Scholar 

  • Arruda DM, Schaefer CEGR, Corrêa GR et al (2015) Landforms and soil attributes determine the vegetation structure in the Brazilian semiarid. Folia Geobot 50:175–184

    Article  Google Scholar 

  • Banhos OFAA, de Souza MC, Habermann G (2016) High aluminum availability may affect Styrax camporum, an Al non-accumulating species from the Brazilian savanna. Theor Exp Plant Physiol 28:321–332

    Article  Google Scholar 

  • Barreto HN, Varajão CAC, Braucher R et al (2013) Denudation rates of the Southern Espinhaço Range, Minas Gerais, Brazil, determined by in situ-produced cosmogenic beryllium-10. Geomorphology 191:1–13

    Article  Google Scholar 

  • Benites VM, Schaefer CEGR, Simas FNB, Santos HG (2007) Soils associated with rock outcrops in the Brazilian mountain ranges Mantiqueira and Espinhaço. In: Revista Brasileira de Botanica. 569–577

  • Bieras AC, Sajo M, das G, (2009) Leaf structure of the cerrado (Brazilian savanna) woody plants. Trees 23:451–471

    Article  Google Scholar 

  • Bittencourt BMOC, da Silva CMS, Filho SZ, Habermann G (2020) Aluminum (Al)-induced organic acid exudation in an Al-accumulating species from the Brazilian savanna. Trees 34:155–162

    Article  Google Scholar 

  • Bockheim JG, Hartemink AE (2013) Distribution and classification of soils with clay-enriched horizons in the USA. Geoderma 209–210:153–160

    Article  Google Scholar 

  • Brady NC, Weil RR (2016) The Nature and Properties of Soils, 15th edn. Pearson Education Limited, New Jersey and Columbus

  • Brasil MMA (2017) Planaveg: Plano Nacional de Recuperação da Vegetação Nativa. MMA, Brasília-DF

  • Braz SP, Urquiaga S, Alves BJR et al (2013) Soil carbon stocks under productive and degraded Brachiaria pastures in the Brazilian cerrado. Soil Sci Soc Am J 77:914–928

    Article  CAS  Google Scholar 

  • Brenner J, Porter W, Phillips JR et al (2018) Phosphorus sorption on tropical soils with relevance to Earth system model needs. Soil Res 57:17–27

    Article  Google Scholar 

  • Bressan ACG, Bittencourt BMOC, Silva GS, Habermann G (2021) Could the absence of aluminum (Al) impair the development of an Al-accumulating woody species from Brazilian savanna? Theor Exp Plant Physiol 33:281–292

    Article  CAS  Google Scholar 

  • Bressan ACG, Coan AI, Habermann G (2016) X-ray spectra in SEM and staining with chrome azurol S show Al deposits in leaf tissues of Al-accumulating and non-accumulating plants from the cerrado. Plant Soil 404:293–306

    Article  CAS  Google Scholar 

  • Bressan ACG, Schwab GS, Banhos OFAA, Tanaka FAO, Habermann G (2020) Physiological, anatomical and ultrastructural effects of aluminum on Styrax camporum, a native Cerrado woody species. J Plant Res 133:625–637

    Article  CAS  PubMed  Google Scholar 

  • Britez RM, Watanabe T, Jansen S et al (2002) The relationship between aluminium and silicon accumulation in leaves of Faramea marginata (Rubiaceae). New Phytol 156:437–444

    Article  CAS  PubMed  Google Scholar 

  • Brunner I, Sperisen C (2013) Aluminum exclusion and aluminum tolerance in woody plants. Front Plant Sci 4:172

    Article  PubMed  PubMed Central  Google Scholar 

  • Bueno ML, Dexter KG, Pennington RT et al (2018) The environmental triangle of the Cerrado Domain: Ecological factors driving shifts in tree species composition between forests and savannas. J Ecol 106:2109–2120

    Article  Google Scholar 

  • Bueno ML, Neves DRM, Souza AF et al (2013) Influence of edaphic factors on the floristic composition of an area of cerradão in the Brazilian central-west. Acta Bot Brasilica 27:445–455

    Article  Google Scholar 

  • Buisson E, Fidelis A, Overbeck GE et al (2021) A research agenda for the restoration of tropical and subtropical grasslands and savannas. Restor Ecol. https://doi.org/10.1111/rec.13292

    Article  Google Scholar 

  • Buol SW, Eswaran H (1999) Oxisols. In: Sparks DL (ed) Advances in Agronomy. Academic Press, pp 151–195

    Google Scholar 

  • Bustamante MMC, Brito DQD, Kozovits AR et al (2012) Effects of nutrient additions on plant biomass and diversity of the herbaceous-subshrub layer of a Brazilian savanna (Cerrado). Plant Ecol 213:795–808

    Article  Google Scholar 

  • Camargo AP, de Souza RSC, de Britto CP et al (2019) Microbiomes of Velloziaceae from phosphorus-impoverished soils of the campos rupestres, a biodiversity hotspot. Sci Data 6:140

    Article  PubMed  PubMed Central  Google Scholar 

  • Camargo AP, de Souza RSC, Jose J, Gerhardt IR (2021) Plant-associated microbiomes promote nutrient turnover in impoverished substrates of a biodiversity hotspot. bioRxiv

  • Campos JD, Chaves HM (2020) Tendências e Variabilidades nas Séries Históricas de Precipitação Mensal e Anual no Bioma Cerrado no Período 1977–2010. Rev Bras Meteorol 35:157–169. https://doi.org/10.1590/0102-7786351019

    Article  Google Scholar 

  • Carlucci MB, Brancalion PHS, Rodrigues RR et al (2020) Functional traits and ecosystem services in ecological restoration. Restor Ecol 28:1372–1383

    Article  Google Scholar 

  • Cássia-Silva C, Cianciaruso MV, Dias PA et al (2020) Among cradles and museums: seasonally dry forest promotes lineage exchanges between rain forest and savanna. Plant Ecol Divers 13:1–13. https://doi.org/10.1080/17550874.2019.1709103

    Article  Google Scholar 

  • Cava MGB, Pilon NAL, Ribeiro MC, Durigan G (2018) Abandoned pastures cannot spontaneously recover the attributes of old-growth savannas. J Appl Ecol 55:1164–1172

    Article  Google Scholar 

  • Chaves DA, Ribeiro-Silva S, Proença CEB et al (2019) Geographic space, relief, and soils predict plant community patterns of Asteraceae in rupestrian grasslands, Brazil. Biotropica 51:155–164

    Article  Google Scholar 

  • Chen L-S, Qi Y-P, Smith BR, Liu X-H (2005) Aluminum-induced decrease in CO2 assimilation in citrus seedlings is unaccompanied by decreased activities of key enzymes involved in CO2 assimilation. Tree Physiol 25:317–324

    Article  CAS  PubMed  Google Scholar 

  • Cianciaruso MV, Silva IA, Manica LT, Souza JP (2013) Leaf habit does not predict leaf functional traits in cerrado woody species. Basic Appl Ecol 14:404–412

    Article  Google Scholar 

  • Cintra BBL, Schietti J, Emillio T et al (2013) Soil physical restrictions and hydrology regulate stand age and wood biomass turnover rates of Purus-Madeira interfluvial wetlands in Amazonia. Biogeosciences 10:7759–7774. https://doi.org/10.5194/bg-10-7759-2013

    Article  Google Scholar 

  • Cochrane TT (1989) Chemical properties of native Savanna and forest soils in central Brazil. Soil Sci Soc Am J 53:139–141

    Article  CAS  Google Scholar 

  • Conceição AA, Pirani JR, Meirelles ST (2007) Floristics, structure and soil of insular vegetation in four quartzite-sandstone outcrops of “Chapada Diamantina”, Northeast Brazil. Rev Bras Bot 30:641–656

    Article  Google Scholar 

  • Corlett RT, Tomlinson KW (2020) Climate Change and Edaphic Specialists: Irresistible Force Meets Immovable Object? Trends Ecol Evol 35:367–376

    Article  PubMed  Google Scholar 

  • Cornwell WK, Schwilk LDW, Ackerly DD (2006) A trait-based test for habitat filtering: convex hull volume. Ecology 87:1465–1471

    Article  PubMed  Google Scholar 

  • Correia JR, Lobo-Burle M, Calderano SB, et al (2001) Caracterização de ambientes na Chapada dos Veadeiros/Vale do Rio Paraná: contribuição para a classificação brasileira de solos. Embrapa Cerrados-Documentos (INFOTECA-E)

  • Coutinho AG, Alves M, Sampaio AB et al (2019) Effects of initial functional-group composition on assembly trajectory in savanna restoration. Appl Veg Sci 22:61–70

    Article  Google Scholar 

  • Cruz Ruggiero PG, Batalha MA, Pivello VR, Meirelles ST (2002) Soil-vegetation relationships in cerrado (Brazilian savanna) and semideciduous forest, Southeastern Brazil. Plant Ecol 160:1–16

  • Cury NF, Silva RCC, Andre MSF et al (2020) Root proteome and metabolome reveal a high nutritional dependency of aluminium in Qualea grandiflora Mart. (Vochysiaceae). Plant Soil 446:125–143

    Article  CAS  Google Scholar 

  • Dalrymple JB, Blong RJ, Conacher AJ (1968) A hypothetical nine unit landsurface model. Z Geomorphol 12:60–76

    Google Scholar 

  • Dave R, Saint-Laurent C, Murray L, et al (2018) Second Bonn challenge progress report. Application of the Barometer in 2019:

  • D’Angioli AM, Dantas VL, Lambais M et al (2021) No evidence of positive feedback between litter deposition and seedling growth rate in Neotropical savannas. Plant Soil 469:305–320

    Article  Google Scholar 

  • D’Angioli AM, Giles AL, Costa PB et al (2022) Abandoned pastures and restored savannahs have distinct patterns of plant-soil feedback and nutrient cycling compared with native Brazilian savannahs. J Appl Ecol. https://doi.org/10.1111/1365-2664.14193

    Article  Google Scholar 

  • Dantas V de L, Hirota M, Oliveira RS, Pausas JG (2016) Disturbance maintains alternative biome states. Ecol Lett 19:12–19. https://doi.org/10.1111/ele.12537

  • de Almeida FFM, Carneiro CDR (1998) Origem e evolução da Serra do Mar. Brazilian J Geol 28:135–150

    Google Scholar 

  • de Andrade AG, de Freitas PL (2018) Prevenção do avanço da degradação e recuperação de terras degradadas. In: de Oliveira Y. M. M. Marques D. K. S. & Silva J. C. B. VGF de MBMP (ed) Vida terrestre: Conbtribuições da EMBRAPA. 63–72

  • de Andrade LRM, Barros LMG, Echevarria GF et al (2011) Al-hyperaccumulator Vochysiaceae from the Brazilian Cerrado store aluminum in their chloroplasts without apparent damage. Environ Exp Bot 70:37–42

    Article  Google Scholar 

  • Camêlo D de L, Gilkes RJ, Leopold M, et al (2018) The application of quartz grain morphology measurements to studying iron-rich duricrusts. CATENA 170:397–408. https://doi.org/10.1016/J.CATENA.2018.06.034

  • de Campos MCR, Pearse SJ, Oliveira RS (2013) Downregulation of net phosphorus-uptake capacity is inversely related to leaf phosphorus-resorption proficiency in four species from a phosphorus-impoverished …. Annals of

  • de Carvalho Júnior OA, Guimarães RF, de Martins É, S, Gomes RAT, (2015) Chapada dos Veadeiros: The Highest Landscapes in the Brazilian Central Plateau. In: Vieira BC, Salgado AAR, Santos LJC (eds) Landscapes and Landforms of Brazil. Springer, Netherlands, Dordrecht. 221–230

    Google Scholar 

  • Denton MD, Veneklaas EJ, Freimoser FM, Lambers H (2007) Banksia species (Proteaceae) from severely phosphorus-impoverished soils exhibit extreme efficiency in the use and re-mobilization of phosphorus. Plant Cell Environ 30:1557–1565

    Article  CAS  PubMed  Google Scholar 

  • de Mesquita Filho MV, Torrent J (1993) Phosphate sorption as related to mineralogy of a hydrosequence of soils from the Cerrado region (Brazil). Geoderma 58:107–123

    Article  Google Scholar 

  • de Oliveira AP, Dusi DM de A, Walter BMT, et al (2019) Avaliação de espécies do Cerrado quanto à tolerância ao alumínio. EMBRAPA, Brasília, DF

  • Oliveira-Filho AT, Shepherd GJ, Martins FR, Stubblebine WH (1989) Environmental factors affecting physiognomic and floristic variation in an area of cerrado in central Brazil. J Trop Ecol 5:413–431

  • De Souza JP, Araújo GM, Haridasan M (2007) Influence of soil fertility on the distribution of tree species in a deciduous forest in the Triângulo Mineiro region of Brazil. Plant Ecol 191:253–263

    Article  Google Scholar 

  • de Souza MC, Williams TCR, Poschenrieder C (2020) Calcicole behaviour of Callisthene fasciculata Mart., an Al‐accumulating species from the Brazilian Cerrado. Plant

  • de Tombeur F, Cornelis J-T, Lambers H (2021) Silicon mobilisation by root-released carboxylates. Trends Plant Sci 26:1116–1125

    Article  PubMed  Google Scholar 

  • de Xavier R, O, Leite MB, da Silva-Matos DM, (2017) Stress responses of native and exotic grasses in a Neotropical savanna predict impacts of global change on invasion spread. Austral Ecol 42:562–576

    Article  Google Scholar 

  • Dı́az S, Cabido M, (2001) Vive la différence: plant functional diversity matters to ecosystem processes. Trends Ecol Evol 16:646–655

    Article  Google Scholar 

  • Domingues TF, Meir P, Feldpausch TR et al (2010) Co-limitation of photosynthetic capacity by nitrogen and phosphorus in West Africa woodlands. Plant Cell Environ 33:959–980

    Article  CAS  PubMed  Google Scholar 

  • dos Santos HG, Carvalho Junior W de, Dart R de O, et al (2011) O novo mapa de solos do Brasil: legenda atualizada. Embrapa Solos-Documentos (INFOTECA-E)

  • Dudley N, Eufemia L, Fleckenstein M et al (2020) Grasslands and savannahs in the UN Decade on Ecosystem Restoration. Restor Ecol 28:1313–1317

    Article  Google Scholar 

  • Durigan G, Ratter JA (2006) Successional changes in Cerrado and Cerrado/forest ecotonal vegetation in Western São Paulo State, Brazil, 1962–2000. Edinb J Bot 63:119–130

    Article  Google Scholar 

  • Durigan G, Munhoz CB, Zakia MJB, Oliveira RS, Pilon NAL, do Valle RST, Walter BMT, Honda EA, Pott A (2022) Cerrado wetlands: multiple ecosystems deserving legal protection as a unique and irreplaceable treasure. Perspect Ecol Conserv. https://doi.org/10.1016/j.pecon.2022.06.002

  • Duszyński F, Migoń P, Strzelecki MC (2019) Escarpment retreat in sedimentary tablelands and cuesta landscapes–Landforms, mechanisms and patterns. Earth-Sci Rev

  • Eloy L, Aubertin C, Toni F et al (2016) On the margins of soy farms: traditional populations and selective environmental policies in the Brazilian Cerrado. J Peasant Stud 43:494–516

    Article  Google Scholar 

  • EMBRAPA (1983) Levantamento de reconhecimento de media intensidade dos solos e avaliacao da aptidao agricola das terras da margem direita do rio Parana- Estado de Goias. Empresa Brasileira de Pesquisa Agropecuária. Serviço Nacional de Levantamento e Conservação de Solos [SNLCS], Rio de Janeiro

  • Favier C, Aleman J, Bremond L et al (2012) Abrupt shifts in African savanna tree cover along a climatic gradient. Glob Ecol Biogeogr 21:787–797

    Article  Google Scholar 

  • Fick SE, Hijmans RJ (2017) WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int J Climatol 37:4302–4315. https://doi.org/10.1002/JOC.5086

    Article  Google Scholar 

  • Fink JR, Inda AV, Tiecher T, Barrón V (2016) Iron oxides and organic matter on soil phosphorus availability. Ciênc Agrotec 40:369–379

    Article  CAS  Google Scholar 

  • Flores BM, de Sá Dechoum M, Schmidt IB et al (2021) Tropical riparian forests in danger from large savanna wildfires. J Appl Ecol 58:419–430. https://doi.org/10.1111/1365-2664.13794

    Article  Google Scholar 

  • Fontes MPF, Weed SB (1996) Phosphate adsorption by clays from Brazilian Oxisols: relationships with specific surface area and mineralogy. Geoderma 72:37–51

    Article  CAS  Google Scholar 

  • Franco AC, Bustamante M, Caldas LS et al (2005) Leaf functional traits of Neotropical savanna trees in relation to seasonal water deficit. Trees 19:326–335

    Article  Google Scholar 

  • Françoso RD, Dexter KG, Machado RB et al (2020) Delimiting floristic biogeographic districts in the Cerrado and assessing their conservation status. Biodivers Conserv 29:1477–1500

    Article  Google Scholar 

  • Funk JL, Cleland EE, Suding KN, Zavaleta ES (2008) Restoration through reassembly: plant traits and invasion resistance. Trends Ecol Evol 23:695–703

    Article  PubMed  Google Scholar 

  • Furley PA, Ratter JA (1988) Soil Resources and Plant Communities of the Central Brazilian Cerrado and Their Development. J Biogeogr 15:97–108

    Article  Google Scholar 

  • Fyllas NM, Patiño S, Baker TR et al (2009) Basin-wide variations in foliar properties of Amazonian forest: phylogeny, soils and climate. Biogeosciences 6:2677–2708

    Article  Google Scholar 

  • Galinari G (2014) Embrapa mapeia degradação das pastagens do Cerrado. In: EMBRAPA. https://www.embrapa.br/busca-de-noticias/-/noticia/2361250/embrapa-mapeia-degradacao-das-pastagens-do-cerrado. Accessed 15 Dec 2021

  • Gardner TA (2006) Tree-grass coexistence in the Brazilian cerrado: demographic consequences of environmental instability. J Biogeogr 33:448–463

    Article  Google Scholar 

  • Garnier E, Navas M-L, Grigulis K (2016) Plant Functional Diversity: Organism Traits, Community Structure, and Ecosystem Properties. Oxford University Press

    Google Scholar 

  • Gilbert L, Johnson D (2017) Plant–plant communication through common mycorrhizal networks. Adv Bot Res 82:83–97

    Article  CAS  Google Scholar 

  • Giles AL, Costa P de B, Rowland L, et al (2021) How effective is direct seeding to restore the functional composition of neotropical savannas? Restor Ecol e13474

  • Goedert WJ (1983) Management of the Cerrado soils of Brazil: a review. J Soil Sci 34:405–428

    Article  CAS  Google Scholar 

  • Goodland R, Pollard R (1973) The Brazilian Cerrado Vegetation: A Fertility Gradient. J Ecol 61:219–224

    Article  Google Scholar 

  • Gray JM, Bishop TFA, Wilford JR (2016) Lithology and soil relationships for soil modelling and mapping. Catena 147:429–440

    Article  Google Scholar 

  • Grevenstuk T, Romano A (2013) Aluminium speciation and internal detoxification mechanisms in plants: where do we stand? Metallomics 5:1584

    Article  CAS  PubMed  Google Scholar 

  • Grime JP (2006) Trait convergence and trait divergence in herbaceous plant communities: Mechanisms and consequences. J Veg Sci 17:255–260

    Article  Google Scholar 

  • Grubb PJ (1989) The role of mineral nutrients in the tropics: a plant ecologist’s view. Mineral nutrients in tropical forest and savanna

  • Guerra A, Reis LK, Borges FLG et al (2020) Ecological restoration in Brazilian biomes: Identifying advances and gaps. For Ecol Manage 458

    Article  Google Scholar 

  • Guilherme Pereira C, Clode PL, Oliveira RS, Lambers H (2018) Eudicots from severely phosphorus-impoverished environments preferentially allocate phosphorus to their mesophyll. New Phytol 218:959–973

    Article  CAS  PubMed  Google Scholar 

  • Guilherme Pereira C, Hayes PE, Clode PL, Lambers H (2021) Phosphorus toxicity, not deficiency, explains the calcifuge habit of phosphorus-efficient Proteaceae. Physiol Plant 172:1724–1738

    Article  CAS  PubMed  Google Scholar 

  • Guilherme Pereira C, Hayes PE, O’Sullivan OS et al (2019) Trait convergence in photosynthetic nutrient-use efficiency along a 2-million year dune chronosequence in a global biodiversity hotspot. J Ecol 107:2006–2023

    Article  CAS  Google Scholar 

  • Haridasan M (1982) Aluminium accumulation by some cerrado native species of central Brazil. Plant Soil 65:265–273

    Article  CAS  Google Scholar 

  • Haridasan M (2008) Nutritional adaptations of native plants of the cerrado biome in acid soils. Braz J Plant Physiol 20:183–195

    Article  Google Scholar 

  • Haridasan M, De Araújo GM (1988) Aluminium-accumulating species in two forest communities in the cerrado region of central Brazil. For Ecol Manage 24:15–26

    Article  CAS  Google Scholar 

  • Hawkins H-J, Hettasch H, Mesjasz-Przybylowicz J et al (2008) Phosphorus toxicity in the Proteaceae: A problem in post-agricultural lands. Sci Hortic 117:357–365

    Article  CAS  Google Scholar 

  • Hayes PE, Clode PL, Oliveira RS, Lambers H (2018) Proteaceae from phosphorus-impoverished habitats preferentially allocate phosphorus to photosynthetic cells: An adaptation improving phosphorus-use efficiency. Plant Cell Environ 41:605–619

    Article  CAS  PubMed  Google Scholar 

  • Hayes PE, Guilherme Pereira C, Clode PL, Lambers H (2019) Calcium-enhanced phosphorus toxicity in calcifuge and soil-indifferent Proteaceae along the Jurien Bay chronosequence. New Phytol 221:764–777

    Article  CAS  PubMed  Google Scholar 

  • Hayes PE, Nge FJ, Cramer MD et al (2021) Traits related to efficient acquisition and use of phosphorus promote diversification in Proteaceae in phosphorus-impoverished landscapes. Plant Soil 462:67–88

    Article  CAS  Google Scholar 

  • Hayes P, Turner BL, Lambers H, Laliberté E (2014) Foliar nutrient concentrations and resorption efficiency in plants of contrasting nutrient-acquisition strategies along a 2-million-year dune chronosequence. J Ecol 102:396–410

    Article  CAS  Google Scholar 

  • Hirota M, Holmgren M, Van Nes EH, Scheffer M (2011) Global resilience of tropical forest and savanna to critical transitions. Science 334:232–235

    Article  CAS  PubMed  Google Scholar 

  • Hodson MJ, Evans DE (2020) Aluminium–silicon interactions in higher plants: an update. J Exp Bot 71:6719–6729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoffmann WA, Geiger EL, Gotsch SG et al (2012) Ecological thresholds at the savanna-forest boundary: how plant traits, resources and fire govern the distribution of tropical biomes. Ecol Lett 15:759–768

    Article  PubMed  Google Scholar 

  • Hooper DU, Chapin FS III, Ewel JJ et al (2005) Effects of biodiversity on ecosystem functioning: A consensus of current knowledge. Ecol Monogr 75:3–35

    Article  Google Scholar 

  • Hopper SD (2009) OCBIL theory: towards an integrated understanding of the evolution, ecology and conservation of biodiversity on old, climatically buffered, infertile landscapes. Plant Soil 322:49–86

    Article  CAS  Google Scholar 

  • Horst WJ, Wang Y, Eticha D (2010) The role of the root apoplast in aluminium-induced inhibition of root elongation and in aluminium resistance of plants: a review. Ann Bot 106:185–197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hunke P, Mueller EN, Schröder B, Zeilhofer P (2015) The Brazilian Cerrado: assessment of water and soil degradation in catchments under intensive agricultural use. Ecohydrology 8:1154–1180

    Article  Google Scholar 

  • IBGE (2012) Manual técnico da vegetação brasileira. IBGE, Rio de Janeiro

    Google Scholar 

  • IUSS Working Group WRB (2015) World Reference Base for Soil Resources 2014, update 2015. FAO, Rome, Italy

  • Jansen S, Broadley MR, Robbrecht E, Smets E (2002) Aluminum hyperaccumulation in angiosperms: A review of its phylogenetic significance. Bot Rev 68:235–269

    Article  Google Scholar 

  • Jansen S, Watanabe T, Smets E (2002) Aluminium accumulation in leaves of 127 species in Melastomataceae, with comments on the order Myrtales. Ann Bot 90:53–64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang H-X, Chen L-S, Zheng J-G et al (2008) Aluminum-induced effects on Photosystem II photochemistry in citrus leaves assessed by the chlorophyll a fluorescence transient. Tree Physiol 28:1863–1871

    Article  CAS  PubMed  Google Scholar 

  • Johnson SE, Loeppert RH (2006) Role of organic acids in phosphate mobilization from iron oxide. Soil Sci Soc Am J 70:222–234

    Article  CAS  Google Scholar 

  • Joswig JS, Wirth C, Schuman MC et al (2021) Climatic and soil factors explain the two-dimensional spectrum of global plant trait variation. Nat Ecol Evol. https://doi.org/10.1038/s41559-021-01616-8

    Article  PubMed  PubMed Central  Google Scholar 

  • Junior WGV, de Moura JB, de Souza RF et al (2020) Seasonal Variation in Mycorrhizal Community of Different Cerrado Phytophysiomies. Front Microbiol 11:2548. https://doi.org/10.3389/FMICB.2020.576764/BIBTEX

  • Kattge J, Bönisch G, Díaz S et al (2020) TRY plant trait database - enhanced coverage and open access. Glob Chang Biol 26:119–188

    Article  PubMed  Google Scholar 

  • Kinraide TB (1991) Identity of the rhizotoxic aluminium species. In: Wright RJ, Baligar VC, Murrmann RP (eds) Plant-Soil Interactions at Low pH: Proceedings of the Second International Symposium on Plant-Soil Interactions at Low pH, 24–29 June 1990, Beckley West Virginia, USA. Springer Netherlands, Dordrecht, pp 717–728

  • Klink CA, Machado RB (2005) Conservation of the Brazilian cerrado. Conserv Biol 19:707–713

    Article  Google Scholar 

  • Kochian LV, Hoekenga OA, Pineros MA (2004) How do crop plants tolerate acid soils? Mechanisms of aluminum tolerance and phosphorous efficiency. Annu Rev Plant Biol 55:459–493

    Article  CAS  PubMed  Google Scholar 

  • Kraft NJB, Adler PB, Godoy O et al (2015) Community assembly, coexistence and the environmental filtering metaphor. Funct Ecol 29:592–599

    Article  Google Scholar 

  • Kunstler G, Falster D, Coomes DA et al (2016) Plant functional traits have globally consistent effects on competition. Nature 529:204–207

    Article  CAS  PubMed  Google Scholar 

  • Laliberté E, Legendre P (2010) A distance-based framework for measuring functional diversity from multiple traits. Ecology 91:299–305

    Article  PubMed  Google Scholar 

  • Lal R, Negassa W, Lorenz K (2015) Carbon sequestration in soil. Curr Opin Environ Sustain 15:79–86

    Article  Google Scholar 

  • Lambers H (1992) Inherent Variation in Growth Rate Between Higher Plants: A Search for Physiological Causes and Ecological Consequences. Academic Press

  • Lambers H (2014) Plant life on the sandplains in southwest Australia: a global biodiversity hotspot. Apollo Books

  • Lambers H, Albornoz F, Kotula L et al (2018) How belowground interactions contribute to the coexistence of mycorrhizal and non-mycorrhizal species in severely phosphorus-impoverished hyperdiverse ecosystems. Plant Soil 424:11–33

    Article  CAS  Google Scholar 

  • Lambers H, Brundrett MC, Raven JA, Hopper SD (2011) Plant mineral nutrition in ancient landscapes: high plant species diversity on infertile soils is linked to functional diversity for nutritional strategies. Plant Soil 348:7

    Article  CAS  Google Scholar 

  • Lambers H, Cawthray GR, Giavalisco P et al (2012) Proteaceae from severely phosphorus-impoverished soils extensively replace phospholipids with galactolipids and sulfolipids during leaf development to achieve a high photosynthetic phosphorus-use-efficiency. New Phytol 196:1098–1108

    Article  CAS  PubMed  Google Scholar 

  • Lambers H, de Britto CP, Oliveira RS, Silveira FAO (2020) Towards more sustainable cropping systems: lessons from native Cerrado species. Theor Exp Plant Physiol 32:175–194

    Article  Google Scholar 

  • Lambers H, Finnegan PM, Jost R et al (2015) Phosphorus nutrition in Proteaceae and beyond. Nat Plants 1:1–9. https://doi.org/10.1038/nplants.2015.109

  • Lambers H, Oliveira RS (2019) Plant Physiological Ecology. Springer International Publishing

  • Lambers H, Shane MW, Cramer MD et al (2006) Root structure and functioning for efficient acquisition of phosphorus: Matching morphological and physiological traits. Ann Bot 98:693–713

    Article  PubMed  PubMed Central  Google Scholar 

  • Lannes LS, Bustamante MMC, Edwards PJ, Olde Venterink H (2016) Native and alien herbaceous plants in the Brazilian Cerrado are (co-) limited by different nutrients. Plant Soil 400:231–243

    Article  CAS  Google Scholar 

  • Latrubesse EM, Arima E, Ferreira ME, et al (2019) Fostering water resource governance and conservation in the Brazilian Cerrado biome. Conservat Sci and Prac 1.: https://doi.org/10.1111/csp2.77

  • Laughlin DC (2014) Applying trait-based models to achieve functional targets for theory-driven ecological restoration. Ecol Lett 17:771–784

    Article  PubMed  Google Scholar 

  • Lavorel S, Grigulis K (2012) How fundamental plant functional trait relationships scale-up to trade-offs and synergies in ecosystem services. J Ecol 100:128–140

    Article  Google Scholar 

  • Lehmann CER, Anderson TM, Sankaran M et al (2014) Savanna vegetation-fire-climate relationships differ among continents. Science 343:548–552

    Article  CAS  PubMed  Google Scholar 

  • Lehmann CER, Archibald SA, Hoffmann WA, Bond WJ (2011) Deciphering the distribution of the savanna biome. New Phytol 191:197–209

    Article  PubMed  Google Scholar 

  • Leite MR, Cassiolato AMR, Lannes LS (2019) Urochloa decumbens has higher mycorrhizal colonization in degraded than in pristine areas in the Brazilian cerrado. Floresta Ambient 26.: https://doi.org/10.1590/2179-8087.006019

  • Lemes L, de Andrade AFA, Loyola R (2020) Spatial priorities for agricultural development in the Brazilian Cerrado: may economy and conservation coexist? Biodivers Conserv 29:1683–1700

    Article  Google Scholar 

  • Le Stradic S, Buisson E, Fernandes GW (2015) Vegetation composition and structure of some Neotropical mountain grasslands in Brazil. J Mt Sci 12:864–877

    Article  Google Scholar 

  • Le Stradic S, Hernandez P, Fernandes GW, Buisson E (2018) Regeneration after fire in campo rupestre: Short- and long-term vegetation dynamics. Flora 238:191–200

    Article  Google Scholar 

  • Lima J, Silva EM, Oliveira-Filho EC, et al (2011) The relevance of the Cerrado’s water resources to the Brazilian development. In: Proceedings of the XIVth IWRA World Water Congress. IWRA, Montpellier

  • Lira-Martins D, Humphreys-Williams E, Strekopytov S, et al (2019) Tropical Tree Branch-Leaf Nutrient Scaling Relationships Vary With Sampling Location. Frontiers in Plant Science 10

  • Lira-Martins D, Schietti J, Feldpausch TR et al (2015) Soil-induced impacts on forest structure drive coarse woody debris stocks across central Amazonia. Plant Ecol Divers 8:229–241. https://doi.org/10.1080/17550874.2013.879942

    Article  Google Scholar 

  • Lloyd J, Domingues TF, Schrodt F et al (2015) Edaphic, structural and physiological contrasts across Amazon Basin forest–savanna ecotones suggest a role for potassium as a key modulator of tropical woody vegetation structure and function. Biogeosciences 12:6529–6571

    Article  Google Scholar 

  • Lopes AS, Cox FR (1977) A survey of the fertility status of surface soils under “cerrado” vegetation in Brazil. Soil Sci Soc Am J 41:742–747

    Article  CAS  Google Scholar 

  • Lopes AS, Guilherme LRG (2016) A career perspective on soil management in the Cerrado region of Brazil. Adv Agron 137:1–72

    Article  Google Scholar 

  • Loveless AR (1961) A Nutritional Interpretation of Sclerophylly Based on Differences in the Chemical Composition of Sclerophyllous and Mesophytic Leaves. Ann Bot 25:168–184

    Article  CAS  Google Scholar 

  • Mahaney WM, Gross KL, Blackwood CB, Smemo KA (2015) Impacts of prairie grass species restoration on plant community invasibility and soil processes in abandoned agricultural fields. Appl Veg Sci 18:99–109

    Article  Google Scholar 

  • Maia LC, Passos JH, Silva JA et al (2020) Species diversity of Glomeromycota in Brazilian biomes. Sydowia 72:181–205

    Google Scholar 

  • Malta PG, Arcanjo-Silva S, Ribeiro C et al (2016) Rudgea viburnoides (Rubiaceae) overcomes the low soil fertility of the Brazilian Cerrado and hyperaccumulates aluminum in cell walls and chloroplasts. Plant Soil 408:369–384

    Article  CAS  Google Scholar 

  • Maranhão DDC, Pereira MG, Collier LS et al (2020) Pedogenesis in a karst environment in the Cerrado biome, northern Brazil. Geoderma 365

    Article  Google Scholar 

  • Marcelino V, Stoops G, Schaefer CEG (2010) Oxic and Related Materials. Interpretation of Micromorphological Features of Soils and Regoliths 305–327

  • Marienfeld S, Schmohl N, Klein M et al (2000) Localisation of Aluminium in Root Tips of Zea mays and Vicia faba. J Plant Physiol 156:666–671

    Article  CAS  Google Scholar 

  • Martinelli LA, Nardoto GB, Soltangheisi A et al (2021) Determining ecosystem functioning in Brazilian biomes through foliar carbon and nitrogen concentrations and stable isotope ratios. Biogeochemistry 154:405–423

    Article  CAS  Google Scholar 

  • McDowell R, Condron L (2001) Influence of soil constituents on soil phosphorus sorption and desorption. Commun Soil Sci Plant Anal 32:2531–2547

    Article  CAS  Google Scholar 

  • McGill BJ, Enquist BJ, Weiher E, Westoby M (2006) Rebuilding community ecology from functional traits. Trends Ecol Evol 21:178–185. https://doi.org/10.1016/j.tree.2006.02.002

    Article  PubMed  Google Scholar 

  • Meira-Neto JAA, Tolentino GS, da Silva MCNA et al (2017) Functional antagonism between nitrogen-fixing leguminous trees and calcicole-drought-tolerant trees in the Cerrado. Acta Bot Brasilica 31:11–18

    Article  Google Scholar 

  • Mendonça AM, das C, Lira JMS, Vilela AL de O, et al (2020) High aluminum concentration and initial establishment of Handroanthus impetiginosus: clues about an Al non-resistant species in Brazilian Cerrado. Res J for 31:2075–2082

    Article  Google Scholar 

  • Messias MCTB, Leite MGP, Meira Neto JAA et al (2013) Soil-Vegetation Relationship in Quartzitic and Ferruginous Brazilian Rocky Outcrops. Folia Geobot 48:509–521

    Article  Google Scholar 

  • Mews HA, Pinto JRR, Eisenlohr PV, Lenza E (2016) No evidence of intrinsic spatial processes driving Neotropical savanna vegetation on different substrates. Biotropica 48:433–442

    Article  Google Scholar 

  • Miatto RC, Batalha MA (2016) Leaf chemistry of woody species in the Brazilian cerrado and seasonal forest: response to soil and taxonomy and effects on decomposition rates. Plant Ecol 217:1467–1479

    Article  Google Scholar 

  • Miatto RC, Wright IJ, Batalha MA (2016) Relationships between soil nutrient status and nutrient-related leaf traits in Brazilian cerrado and seasonal forest communities. Plant Soil 404:13–33

    Article  CAS  Google Scholar 

  • Minocha R, Minocha SC, Long SL, Shortle WC (1992) Effects of aluminum on DNA synthesis, cellular polyamines, polyamine biosynthetic enzymes and inorganic ions in cell suspension cultures of a woody plant, Catharanthus roseus. Physiol Plant 85:417–424

    Article  CAS  Google Scholar 

  • Motta PEF, Curi N, Franzmeier DP (2002) 2. Relation of Soils and Geomorphic Surfaces in the Brazilian Cerrado. In: The Cerrados of Brazil. Columbia University Press, pp 13–32

  • Mota NM, Rezende VL, da Silva MG et al (2016) Forces driving the regeneration component of a rupestrian grassland complex along an altitudinal gradient. Brazilian J Botany 39:845–860

    Article  Google Scholar 

  • Mota GS, Luz GR, Mota NM et al (2018) Changes in species composition, vegetation structure, and life forms along an altitudinal gradient of rupestrian grasslands in south-eastern Brazil. Flora 238:32–42

  • Moulatlet GM, Zuquim G, Figueiredo FOG et al (2017) Using digital soil maps to infer edaphic affinities of plant species in Amazonia: Problems and prospects. Ecol Evol 7:8463–8477

    Article  PubMed  PubMed Central  Google Scholar 

  • Muggler CC, Buurman P, van Doesburg JDJ (2007) Weathering trends and parent material characteristics of polygenetic oxisols from Minas Gerais, Brazil: I. Mineralogy Geoderma 138:39–48

    Article  CAS  Google Scholar 

  • Murphy BP, Bowman DMJS (2012) What controls the distribution of tropical forest and savanna? Ecol Lett 15:748–758

    Article  PubMed  Google Scholar 

  • Myers N, Mittermeier RA, Mittermeier CG et al (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858

    Article  CAS  PubMed  Google Scholar 

  • Nascimento DL, Abrahão A, Lambers H et al (2021) Biogeomorphological evolution of rocky hillslopes driven by roots in campos rupestres. Brazil Geomorphology 395. https://doi.org/10.1016/J.GEOMORPH.2021.107985

    Article  Google Scholar 

  • Negreiros D, Le Stradic S, Fernandes GW, Rennó HC (2014) CSR analysis of plant functional types in highly diverse tropical grasslands of harsh environments. Plant Ecol 215:379–388

    Article  Google Scholar 

  • Neri AV, Schaefer CEG, Silva AF et al (2012) The influence of soils on the floristic composition and community structure of an area of Brazilian Cerrado vegetation. Edinb J Bot 69:1–27

    Article  Google Scholar 

  • Nogueira MA, Bressan ACG, Pinheiro MHO, Habermann G (2019) Aluminum-accumulating Vochysiaceae species growing on a calcareous soil in Brazil. Plant Soil 437:313–326

    Article  CAS  Google Scholar 

  • Ollier C, Pain C (1996) Regolith, soils and landforms. John Wiley, Chichester, UK

    Google Scholar 

  • Ollier C, Pain C (2000) The Origin of Mountains. Routledge, London, UK

    Google Scholar 

  • Oliveira-Filho AT (2015) Um sistema de classificação fisionômico-ecológico da vegetação neotropical: segunda aproximação. Fitossociologia No Brasil: Métodos e Estudos De Casos 2:385–411

    Google Scholar 

  • Oliveira-Filho AT, Ratter JA (1995) A study of the origin of central Brazilian forests by the analysis of plant species distribution patterns. Edinb J Bot 52:141–194

    Article  Google Scholar 

  • Oliveira RS, Galvão HC, de Campos MCR et al (2015) Mineral nutrition of campos rupestres plant species on contrasting nutrient-impoverished soil types. New Phytol 205:1183–1194

    Article  CAS  PubMed  Google Scholar 

  • Oliveira VA, Jacomine PKT, Couto EG (2017) Solos do bioma Cerrado. Pedologia: Solos dos Biomas Brasileiros 177–226

  • Oliveira GC, C, Arruda DM, Fernandes Filho EI, et al (2021a) Soil predictors are crucial for modelling vegetation distribution and its responses to climate change. Sci Total Environ 780

  • Oliveira RS, Eller CB, de Barros F, V, et al (2021b) Linking plant hydraulics and the fast-slow continuum to understand resilience to drought in tropical ecosystems. New Phytol 230:904–923

    Article  PubMed  Google Scholar 

  • Ordoñez JC, van Bodegom PM, Witte J-PM et al (2009) A global study of relationships between leaf traits, climate and soil measures of nutrient fertility. Glob Ecol Biogeogr 18:137–149

    Article  Google Scholar 

  • Paganeli B, Dexter KG, Batalha MA (2020) Early growth in a congeneric pair of savanna and seasonal forest trees under different nitrogen and phosphorus availability. Theor Exp Plant Physiol 32:19–30

    Article  CAS  Google Scholar 

  • Parrish JT, Ziegler AM, Scotese CR (1982) Rainfall patterns and the distribution of coals and evaporites in the Mesozoic and Cenozoic. Palaeogeogr Palaeoclimatol Palaeoecol 40:67–101

    Article  Google Scholar 

  • Paula GA, Fischer E, Silveira M et al (2021) Woody species distribution across a savanna-dry forest soil gradient in the Brazilian Cerrado. Braz J Biol 83

    Article  CAS  PubMed  Google Scholar 

  • Pausas JG, Lamont BB, Paula S et al (2018) Unearthing belowground bud banks in fire-prone ecosystems. New Phytol 217:1435–1448

    Article  PubMed  Google Scholar 

  • Pavinato PS, Rocha GC, Cherubin MR, Harris I (2020) Map of total phosphorus content in native soils of Brazil. Scientia

  • Pekin BK, Boer MM, Wittkuhn RS et al (2012) Plant diversity is linked to nutrient limitation of dominant species in a world biodiversity hotspot. J Veg Sci 23:745–754

    Article  Google Scholar 

  • Pellizzaro KF, Cordeiro AOO, Alves M et al (2017) “Cerrado” restoration by direct seeding: field establishment and initial growth of 75 trees, shrubs and grass species. Rev Bras Bot 40:681–693

    Article  Google Scholar 

  • Pereira CG, Almenara DP, Winter CE et al (2012) Underground leaves of Philcoxia trap and digest nematodes. Proc Natl Acad Sci U S A 109:1154–1158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Phillips JD (2019) Evolutionary Pathways in Soil-Geomorphic Systems. Soil Sci 184:1–12. https://doi.org/10.1097/SS.0000000000000246

    Article  CAS  Google Scholar 

  • Pilon NAL, Buisson E, Durigan G (2018) Restoring Brazilian savanna ground layer vegetation by topsoil and hay transfer. Restor Ecol 26:73–81

    Article  Google Scholar 

  • Pinheiro M, Monteiro R (2010) Contribution to the discussions on the origin of the cerrado biome: Brazilian savanna. Braz J Biol 70:95–102

    Article  CAS  PubMed  Google Scholar 

  • Poggio L, de Sousa LM, Batjes NH et al (2021) SoilGrids 2.0: producing soil information for the globe with quantified spatial uncertainty. SOIL 7:217–240

    Article  CAS  Google Scholar 

  • Porder S (2019) How Plants Enhance Weathering and How Weathering is Important to Plants. Elements 15:241–246. https://doi.org/10.2138/GSELEMENTS.15.4.241

    Article  CAS  Google Scholar 

  • Porder S, Ramachandran S (2013) The phosphorus concentration of common rocks—a potential driver of ecosystem P status. Plant Soil 367:41–55

    Article  CAS  Google Scholar 

  • Proctor J (1989) Mineral nutrients in tropical forest and savanna ecosystems., 9th edn. Blackwell Scientific Publications, Oxford

  • Quesada CA, Phillips OL, Schwartz M et al (2012) Basin-wide variations in Amazon forest structure and function are mediated by both soils and climate. Biogeosciences 9:2203–2246. https://doi.org/10.5194/bg-9-2203-2012

    Article  Google Scholar 

  • Rahman R, Upadhyaya H (2021) Aluminium Toxicity and Its Tolerance in Plant: A Review. J Plant Biol 64:101–121

    Article  CAS  Google Scholar 

  • Rajakaruna N (2018) Lessons on Evolution from the Study of Edaphic Specialization. Bot Rev 84:39–78

    Article  Google Scholar 

  • Ratter JA, Bridgewater S, Ribeiro JF (2003) Analysis of the floristic composition of the brazilian cerrado vegetation iii: comparison of the woody vegetation of 376 areas. Edinb J Bot 60:57–109

    Article  Google Scholar 

  • Ratter JA, Ribeiro JF, Bridgewater S (1997) The Brazilian Cerrado Vegetation and Threats to its Biodiversity. Ann Bot 80:223–230

    Article  Google Scholar 

  • Raven JA, Lambers H, Smith SE, Westoby M (2018) Costs of acquiring phosphorus by vascular land plants: patterns and implications for plant coexistence. New Phytol 217:1420–1427. https://doi.org/10.1111/nph.14967

    Article  CAS  PubMed  Google Scholar 

  • Reatto A, Correia JR, Spera ST (1998) Solos do bioma Cerrado: aspectos pedológicos. Cerrado: ambiente e flora

  • Reid WV, Mooney HA, Cropper A, Capistrano D (2005) Ecosystems and human well-being-Synthesis: A report of the Millennium Ecosystem Assessment

  • Rezende ÉA, Salgado AAR (2011) Mapeamento de unidades de relevo na média Serra do Espinhaço - MG. GEOUSP Espaço e Tempo 15:45. https://doi.org/10.11606/issn.2179-0892.geousp.2011.74231

  • Richter DD, Babbar LI (1991) Soil Diversity in the Tropics. In: Begon M, Fitter AH, Macfadyen A (eds) Advances in Ecological Research. Academic Press, pp 315–389

    Google Scholar 

  • Rizzini CT (1997) Tratado de fitogeografia do Brasil. Âmbito Cultural Edições 2a ed Rio de Janeiro, Brazil

  • Römheld V, Marschner H (1986) Evidence for a specific uptake system for iron phytosiderophores in roots of grasses. Plant Physiol 80:175–180

    Article  PubMed  PubMed Central  Google Scholar 

  • Rossatto DR, Franco AC (2017) Expanding our understanding of leaf functional syndromes in savanna systems: the role of plant growth form. Oecologia 183:953–962. https://doi.org/10.1007/s00442-017-3815-6

    Article  PubMed  Google Scholar 

  • Rossatto DR, Kolb RM, Franco AC (2015) Leaf anatomy is associated with the type of growth form in Neotropical savanna plants. Botany 93:507–518

    Article  Google Scholar 

  • Ruggiero PGC, Pivello VR, Sparovek G et al (2006) Relação entre solo, vegetação e topografia em área de cerrado (Parque Estadual de Vassununga, SP): como se expressa em mapeamentos? Acta Bot Brasilica 20:383–394

    Article  Google Scholar 

  • Saadi A, Bezerra FHR, Costa RD, et al (2005) Neotectônica da Plataforma Brasileira Pp. 211--234. Quaternário do Brasil Ribeirão Preto, Holos, 378p

  • Salgado AAR, Bueno GT, Diniz AD, Marent BR (2015) Long-Term Geomorphological Evolution of the Brazilian Territory. In: Vieira BC, Salgado AAR, Santos LJC (eds) Landscapes and Landforms of Brazil. Springer, Netherlands, Dordrecht, pp 19–31

    Google Scholar 

  • Sampaio AB, Vieira DLM, Holl KD et al (2019) Lessons on direct seeding to restore Neotropical savanna. Ecol Eng 138:148–154

    Article  Google Scholar 

  • Sano EE, Rodrigues AA, Martins ES et al (2019) Cerrado ecoregions: A spatial framework to assess and prioritize Brazilian savanna environmental diversity for conservation. J Environ Manage 232:818–828

    Article  PubMed  Google Scholar 

  • Sano EE, Rosa R, Brito JLS, Ferreira LG (2010) Land cover mapping of the tropical savanna region in Brazil. Environ Monit Assess 166:113–124

    Article  PubMed  Google Scholar 

  • Sano SM, de Almeida SP, Ribeiro JF (2008) Cerrado: ecologia e flora. Embrapa Informação Tecnológica

  • Schaefer CEG, Fabris JD, Ker JC (2008) Minerals in the clay fraction of Brazilian Latosols (Oxisols): a review. Clay Miner 43:137–154

    Article  CAS  Google Scholar 

  • Schaefer CEGR, Schaefer CEG, Corrêa GR, et al (2016) The Physical Environment of Rupestrian Grasslands (Campos Rupestres) in Brazil: Geological, Geomorphological and Pedological Characteristics, and Interplays. Ecology and Conservation of Mountaintop grasslands in Brazil 15–53

  • Schaefer CER (2001) Brazilian latosols and their B horizon microstructure as long-term biotic constructs. Soil Research

  • Schaetzl RJ, Anderson S (2005) Professor of Medicine Division of Nephrology and Hypertension Sharon Anderson. Genesis and Geomorphology. Cambridge University Press, Soils

    Google Scholar 

  • Schmidt IB, Eloy L (2020) Fire regime in the Brazilian Savanna: Recent changes, policy and management. Flora 268

    Article  Google Scholar 

  • SER (2004) The SER International Primer on Ecological Restoration. Society for Ecological Restoration International Science and Policy Working Group, Tucson

    Google Scholar 

  • Shane MW, Lambers H (2005) Cluster roots: A curiosity in context. Plant Soil 274:101–125

    Article  CAS  Google Scholar 

  • Silva AC (2005) Solos. In: Silva AC, Pedreira LCVSF, Abreu PAA (eds) Serra do Espinhaço Meridional: paisagens e ambientes. O Lutador, Belo Horizonte, p 271

  • Silva GS, Gavassi MA, Nogueira MA, Habermann G (2018) Aluminum prevents stomatal conductance from responding to vapor pressure deficit in Citrus limonia. Environ Exp Bot 155:662–671

    Article  CAS  Google Scholar 

  • Silva IR, Smyth TJ, Moxley DF et al (2000) Aluminum accumulation at nuclei of cells in the root tip. Fluorescence detection using lumogallion and confocal laser scanning microscopy. Plant Physiol 123:543–552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Silva LCR, Hoffmann WA, Rossatto DR et al (2013) Can savannas become forests? A coupled analysis of nutrient stocks and fire thresholds in central Brazil. Plant Soil 373:829–842. https://doi.org/10.1007/s11104-013-1822-x

    Article  CAS  Google Scholar 

  • Silva LCR, Sternberg L, Haridasan M et al (2008) Expansion of gallery forests into central Brazilian savannas. Glob Chang Biol 14:2108–2118

    Article  Google Scholar 

  • Silva MB, dos Anjos LHC, Pereira MG et al (2017) Soils in the karst landscape of Bodoquena plateau in cerrado region of Brazil. Catena 154:107–117

    Article  CAS  Google Scholar 

  • Silva MRSS, Pereira de Castro A, Krüger RH, Bustamante M (2019) Soil bacterial communities in the Brazilian Cerrado: response to vegetation type and management. Acta Oecol 100

  • Silva PS, Nogueira J, Rodrigues JA et al (2021) Putting fire on the map of Brazilian savanna ecoregions. J Environ Manage 296

    Article  PubMed  Google Scholar 

  • Silveira FAO, Dayrell RLC, Fiorini CF et al (2020) Diversification in ancient and nutrient-poor neotropical ecosystems: How geological and climatic buffering shaped plant diversity in some of the world’s neglected hotspots. Neotropical Diversification: Patterns and Processes. Springer International Publishing, Cham, pp 329–368

    Chapter  Google Scholar 

  • Silveira FAO, Negreiros D, Barbosa NPU et al (2016) Ecology and evolution of plant diversity in the endangered campo rupestre: a neglected conservation priority. Plant Soil 403:129–152

    Article  CAS  Google Scholar 

  • Singh S, Tripathi DK, Singh S et al (2017) Toxicity of aluminium on various levels of plant cells and organism: A review. Environ Exp Bot 137:177–193

    Article  CAS  Google Scholar 

  • Soares DM, Nascimento ART, Alves GS, de Oliveira CHE (2021) The importance of palm swamps for carbon storage in a multifunctional landscape in the Brazilian savanna. Regional Environ Change 21:116

    Article  Google Scholar 

  • Solbrig O (1993) Ecological constraints to savanna land use. The World’s Savannas: Economic Driving Forces, Ecological Constraints and Policy Options for Sustainable Land Use Man and the Biosphere Series 12:

  • Specht RL, Rundel PW (1990) Sclerophylly and Foliar Nutrient Status of Mediterranean-Climate Plant Communities in Southern Australia. Aust J Bot 38:459–474

    Article  Google Scholar 

  • Standish RJ, Hobbs RJ, Mayfield MM et al (2014) Resilience in ecology: Abstraction, distraction, or where the action is? Biol Conserv 177:43–51

    Article  Google Scholar 

  • Staver AC, Archibald S, Levin SA (2011) The global extent and determinants of savanna and forest as alternative biome states. Science 334:230–232

    Article  CAS  PubMed  Google Scholar 

  • Strassburg BBN, Brooks T, Feltran-Barbieri R et al (2017) Moment of truth for the Cerrado hotspot. Nat Ecol Evol 1:99

    Article  PubMed  Google Scholar 

  • Suding KN, Lavorel S, Chapin FS et al (2008) Scaling environmental change through the community-level: a trait-based response-and-effect framework for plants. Glob Chang Biol 14:1125–1140. https://doi.org/10.1111/j.1365-2486.2008.01557.x

    Article  Google Scholar 

  • Sulpice R, Ishihara H, Schlereth A et al (2014) Low levels of ribosomal RNA partly account for the very high photosynthetic phosphorus-use efficiency of Proteaceae species. Plant Cell Environ 37:1276–1298

    Article  CAS  PubMed  Google Scholar 

  • Soil Survey Staff (2014) Keys to Soil Taxonomy, 12th edn. USDA-Natural Resources Conservation Service, Washington, DC, USA

  • Tameirão LBS, Caminha-Paiva D, Negreiros D et al (2021) Role of environmental filtering and functional traits for species coexistence in a harsh tropical montane ecosystem. Biol J Linn Soc Lond 133:546–560

    Article  Google Scholar 

  • Tardy Y (1993) Pétrologie des latérites et des sols tropicaux. Paris

  • Tardy Y, Kobilsek B, Paquet H (1991) Mineralogical composition and geographical distribution of African and Brazilian periatlantic laterites. The influence of continental drift and tropical paleoclimates during the past 150 million years and implications for India and Australia. J Afr Earth Sci 12:283–295

    Article  CAS  Google Scholar 

  • Temperton VM, Buchmann N, Buisson E et al (2019) Step back from the forest and step up to the Bonn Challenge: How a broad ecological perspective can promote successful landscape restoration. Restor Ecol. https://doi.org/10.1111/rec.12989

    Article  Google Scholar 

  • Teodoro GS, Lambers H, Nascimento DL et al (2019) Specialized roots of Velloziaceae weather quartzite rock while mobilizing phosphorus using carboxylates. Funct Ecol 33:762–773

    Article  Google Scholar 

  • ter Steege H, Pitman NCA, Phillips OL et al (2006) Continental-scale patterns of canopy tree composition and function across Amazonia. Nature 443:444–447

    Article  PubMed  Google Scholar 

  • Thomazini LI (1974) Mycorrhiza in plants of the “cerrado.” Plant Soil 41:707–711

    Article  Google Scholar 

  • Tilman D (2001) Functional Diversity Encyclopedia of Biodiversity 3:109–120

    Article  Google Scholar 

  • Tolrà RP, Poschenrieder C, Luppi B, Barceló J (2005) Aluminium-induced changes in the profiles of both organic acids and phenolic substances underlie Al tolerance in Rumex acetosa L. Environ Exp Bot 54:231–238

    Article  Google Scholar 

  • Tuomisto H, Ruokolainen K, Yli-Halla M (2003) Dispersal, environment, and floristic variation of western Amazonian forests. Science 299:241–244

    Article  CAS  PubMed  Google Scholar 

  • Tyler G (2003) Some ecophysiological and historical approaches to species richness and calcicole/calcifuge behaviour — contribution to a debate. Folia Geobot 38:419–428

    Article  Google Scholar 

  • Vallicrosa H, Sardans J, Maspons J et al (2021) Global maps and factors driving forest foliar elemental composition: the importance of evolutionary history. New Phytol. https://doi.org/10.1111/nph.17771

    Article  PubMed  Google Scholar 

  • Valliere JM, Ruscalleda Alvarez J, Cross AT et al (2021) Restoration ecophysiology: an ecophysiological approach to improve restoration strategies and outcomes in severely disturbed landscapes. Restor Ecol. https://doi.org/10.1111/rec.13571

    Article  Google Scholar 

  • Veenendaal EM, Torello-Raventos M, Feldpausch TR et al (2015) Structural, physiognomic and aboveground biomass variation in savanna-forest transition zones on three continents. How different are co-occurring savanna and forest formations? Biogeosciences 12:2927–2951

    Article  Google Scholar 

  • Veenendaal EM, Torello-Raventos M, Miranda HS et al (2018) On the relationship between fire regime and vegetation structure in the tropics. New Phytol 218:153–166

    Article  PubMed  Google Scholar 

  • Veldman JW, Overbeck GE, Negreiros D et al (2015) Where tree planting and forest expansion are bad for biodiversity and ecosystem services. Bioscience 65:1011–1018

    Article  Google Scholar 

  • Veneklaas EJ, Lambers H, Bragg J et al (2012) Opportunities for improving phosphorus-use efficiency in crop plants. New Phytol 195:306–320

    Article  CAS  PubMed  Google Scholar 

  • Viani RAG, Rodrigues RR, Dawson TE et al (2014) Soil pH accounts for differences in species distribution and leaf nutrient concentrations of Brazilian woodland savannah and seasonally dry forest species. Perspect Plant Ecol Evol Syst 16:64–74

    Article  Google Scholar 

  • Vidal JDD, de Souza AP, Koch I (2019) Impacts of landscape composition, marginality of distribution, soil fertility and climatic stability on the patterns of woody plant endemism in the Cerrado. Glob Ecol Biogeogr 28:904–916

    Article  Google Scholar 

  • Violle C, Navas ML, Vile D et al (2007) Let the concept of trait be functional! Oikos 116:882–892. https://doi.org/10.1111/j.0030-1299.2007.15559.x

    Article  Google Scholar 

  • Watanabe T, Broadley MR, Jansen S et al (2007) Evolutionary control of leaf element composition in plants. New Phytol 174:516–523

    Article  CAS  PubMed  Google Scholar 

  • Werneck FP (2011) The diversification of eastern South American open vegetation biomes: Historical biogeography and perspectives. Quat Sci Rev 30:1630–1648. https://doi.org/10.1016/j.quascirev.2011.03.009

    Article  Google Scholar 

  • White PJ, Broadley MR (2003) Calcium in plants. Ann Bot 92:487–511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilsey B (2018) The Biology of Grasslands. Oxford University Press

    Book  Google Scholar 

  • Wilson JB (2007) Trait-divergence assembly rules have been demonstrated: Limiting similarity lives! A reply to Grime. J Veg Sci 18:451–452

    Article  Google Scholar 

  • Wilson MJ (2019) The importance of parent material in soil classification: A review in a historical context. Catena 182

    Article  CAS  Google Scholar 

  • Wright IJ, Cannon K (2001) Relationships between leaf lifespan and structural defences in a low-nutrient, sclerophyll flora. Funct Ecol 15:351–359

    Article  Google Scholar 

  • Young SL, Barney JN, Kyser GB et al (2008) Functionally similar species confer greater resistance to invasion: implications for grassland restoration. Restor Ecol 17:884–892

    Article  Google Scholar 

  • Zappi DC, Moro MF, Meagher TR, Nic Lughadha E (2017) Plant Biodiversity Drivers in Brazilian Campos Rupestres: Insights from Phylogenetic Structure. Front Plant Sci 8:2141

    Article  PubMed  PubMed Central  Google Scholar 

  • Zemunik G, Lambers H, Turner BL et al (2018) High abundance of non-mycorrhizal plant species in severely phosphorus-impoverished Brazilian campos rupestres. Plant Soil 424:255–271

    Article  CAS  Google Scholar 

  • Zinck JA (2013) Geopedology, Elements of geomorphology for soil and geohazard studies. ITC Special Lecture Notes Series ITC (Faculty of Geo-Information Science and Earth Observation), Enschede, The Netherlands

Download references

Acknowledgements

This manuscript is a homage to Prof. Hans Lambers, who greatly contributed to the training, formal and informal education of researchers in Brazil. Prof. Lambers was a visiting Professor at the University of Campinas and in collaboration with Prof. Rafael Oliveira promoted the exchange of several postgraduate students between Brazil and Australia. The collaboration, formed in 2008, helped fill an important knowledge gap in root ecology and its relation to community assembly in nutrient-impoverished soils, shedding light on mechanisms underlying plant species occurrence, distribution, and interactions, which are dependent on how efficiently roots can acquire nutrients. His contribution to the Brazilian plant and soil sciences has been invaluable. We would like to thank Leandro Maracahipes, Natashi Pilon, and Rafael Xavier for their suggestions of species lists for the final figure. We also thank Francisco Ladeira for providing a picture of a Ferralsol.

Funding

DLM, LR and RSO acknowledge the joint NERC (Natural Environment Research Council)-FAPESP grant (NE/S000011/1 & FAPESP – 2019/07773–1) for funding this work. DLM further acknowledges FAPESP for granting financial support (Process 2019/18176–4). DLN acknowledges the support from Brazilian National Council for Scientific and Technological Development (CNPq) for grants (140807/2017–9 and 164546/2020–0). AA acknowledges Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)—88881.172163/2018–01, Deutsche Forschungsgemeinschaft DFG Priority Program 1374 "Infrastructure-Biodiversity-Exploratories”. RSO received a CNPq productivity scholarship. We thank Dr. Francisco Sérgio Bernardes Ladeira to provide the Ferralsols photography.

Author information

Authors and Affiliations

Authors

Contributions

DLM and RSO contributed to the study conception. All authors contributed to the study design. DLM, DLN, AA, AMDA, PDBC, LR and EV, worked on material preparation. DLM performed data collection and analyses. The first draft of the manuscript was written by DLM and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Demetrius Lira-Martins.

Ethics declarations

Competing Interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Responsible Editor: Hans Lambers.

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lira-Martins, D., Nascimento, D.L., Abrahão, A. et al. Soil properties and geomorphic processes influence vegetation composition, structure, and function in the Cerrado Domain. Plant Soil 476, 549–588 (2022). https://doi.org/10.1007/s11104-022-05517-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-022-05517-y

Keywords

Navigation