Skip to main content
Log in

Vegetation composition and structure of some Neotropical mountain grasslands in Brazil

  • Published:
Journal of Mountain Science Aims and scope Submit manuscript

Abstract

The description and understanding of plant communities is fundamental for the implementation of conservation or restoration programs, especially when these communities are highly threatened and need to be restored. Campos rupestres, some Neotropical mountain grasslands located in central Brazil and part of the Cerrado biome (covering 2 million km2) host unique plant communities, currently threatened by quarrying and mining. The grassy matrix of campos rupestres, has long been considered a rich mosaic under the control of local topography and the nature of substrate, but this affirmation has not been well studied. We analyzed whether plant communities varied in relation to edaphic factors within the stony substrate and the sandy substrate of this grassy matrix. We selected 5 sites where occur both grasslands on stony substrate and on sandy substrate, and we carried out vegetation surveys and soil analyses. We counted 222 plant species within our communities, among which 38.6% are exclusively found on campos rupestres. Our results show that both soil-types are strongly acidic, nutrient poor and exhibit a seasonal variation. Phosphorus increases and pH and organic carbon decrease during the dry season. Stony soils are slightly richer in nutrients than sandy soils and differences in soil granulometry and composition have led to the formation of distinct plant communities. Some species are confined to either one or the other grassland-type, which makes the plant composition of each community unique. Variations in edaphic factors generate heterogeneous grasslands favorable to a high plant diversity. Conservation programs and restoration actions have to maintain or recreate this heterogeneity. The presence of distinct plant communities implies that different strategies might be adopted to improve the restoration of these ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alves RJV, Kolbek J (2010) Can campo rupestre vegetation be floristically delimited based on vascular plant genera? Plant Ecology 207:67–79. DOI: 10.1007 11258-009-9654-8

    Article  Google Scholar 

  • Alves RJV, Kolbek J (1994) Plant species endemism in savanna vegetation on table mountains (Campo Rupestre) in Brazil. Vegetatio 113:125–139. DOI: 10.1007/BF00044230

    Google Scholar 

  • Barbosa NPU, Fernandes GW, Carneiro MAA, et al. (2010) Distribution of non-native invasive species and soil properties in proximity to paved roads and unpaved roads in a quartzitic mountainous grassland of southeastern Brazil (campos rupestres). Biological Invasions 12: 3745–3755. DOI: 10.1007/ s10530-010-9767-y

    Article  Google Scholar 

  • Benites VM, Caiafa AN, Mendonça ES, et al. (2003) Soils and vegetation of the altitudinal rupestrian complexes of Mantiqueira and Espinhaço (Solos e vegetaçao nos complexos rupestres de altitude da Mantiqueira e do Espinhaço). Floresta e Ambiente 10: 76–85. (In portuguese)

    Google Scholar 

  • Benites VM, Schaefer CEGR, Simas FNB, Santos HG (2007) Soils associated with rock outcrops in the Brazilian mountain ranges Mantiqueira and Espinhaço. Revista Brasileira de Botânica 30: 569–577. DOI: 10.1590/S0100- 84042007000400003

    Google Scholar 

  • Borges RAX, Carneiro MAA, Viana PL (2011) Altitudinal distribution and species richness of herbaceous plants in campo rupestres of the Southern Espinhaço range, Minas Gerais, Brazil. Rodriguesia 62: 139–152.

    Google Scholar 

  • Carvalho F, Souza FA, Carrenho R, Moreira FMS, Jesus EC, Fernandes GW (2012) The mosaic of habitats in the highaltitude Brazilian rupestrian fields is a hotspot for arbuscular mycorrhizal fungi. Applied Soil Ecology 52: 9–19. DOI: 10.1016/j.apsoil.2011.10.001

    Article  Google Scholar 

  • Conceiçao AA, Pirani JR, Meirelles ST (2007) Floristics, structure and soil of insular vegetation in four quartzitesandstone outcrops of "Chapada Diamantina", Northeast Brazil. Revista Brasileira de Botânica 30: 641–656. DOI: 10.1590/S0100-84042007000400009

    Google Scholar 

  • Conceiçao AA, Pirani JR (2005) Habitat delimitation in campos rupestres of the Chapada Diamantina, Bahia: substrate, floristic composition and structure (Delimitaçao de habitats em campos rupestres na Chapada Diamantina, Bahia: substratos, composiçao floristica e aspectos estruturais). Boletim de Botânica da Universidade de Sao Paulo 23: 85–111. (In portuguese)

    Article  Google Scholar 

  • Convention on Biological Diversity (2004) The programme of work on mountain biological diversity. Available online at: https://www.cbd.int/mountain/pow.shtml (Accessed on 10 July 2015)

  • Coutinho LM (1990) Fire in the ecology of the Brazilian Cerrado. In: Goldammer JG (Ed.), Fire in the Tropical Biota: Ecosystem Processes and Global Challenges. Springer Verlag, Berlin, Germany. pp 82–105.

    Chapter  Google Scholar 

  • Dolédec S, Chessel D (1994) Co-inertia analysis: an alternative method for studying species-environment relationships. Freshwater Biology 31: 277–294. DOI: 10.1111/j.1365-2427. 1994.tb01741.x

    Article  Google Scholar 

  • Echternacht L, Trovo M, Oliveira CT, et al. (2011) Areas of endemism in the Espinhaço Range in Minas Gerais. Flora 206: 782–791. DOI: 10.1016/j.flora.2011.04.003

    Article  Google Scholar 

  • EMBRAPA - EMPRESA BRASILEIRA DE PESQUISA AGROPECUÄRIA (1997) Soil analysis handbook (Manual de métodos de analise de solo). 2nd ed. Embrapa Solos, Rio de Janeiro, Brazil. p 212. (In portuguese)

  • European Commission (2000) Natura 2000, Managing our heritage. Luxembourg, Luxembourg.

  • European Commission (2007) Interpretation manual of European Union habitats. Available online at: http://ec.europa.eu/environment/nature/legislation/habitats directive/docs/2007_07_im.pdf (Accessed on 24 August 2013)

  • FAO (1998) Unasylva - Moving mountains. Food and Agriculture Organization of the United Nations, Rome, Italy.

  • Fernandes GW, Barbosa NPU, Negreiros D, et al. (2014) Challenges for the conservation of vanishing megadiverse rupestrian grasslands. Natureza & Conservaçao 12(2): 162–165. DOI: 10.1016/j.ncon.2014.08.003

    Article  Google Scholar 

  • Giulietti AM, Menezes NA, Pirani JR, et al. (1987) Serra do Cipo flora: characteristics and species list (Flora da Serra do Cipo: caracterizaçao e lista das espécies). Boletim de Botânica da Universidade de Sao Paulo 9: 1–151. (In portuguese)

    Article  Google Scholar 

  • Giulietti AM, Pirani JR, Harley RM (1997) Espinhaço range region: eastern Brazil. In: Davis SD et al. (eds.), Centre of plants diversity: a guide and strategy for their conservation. World Wildlife Fund / World Conservation Union, Cambridge, UK. pp 397–404.

    Google Scholar 

  • Giulietti AM, Harley RM, Queiroz LP, et al. (2005) Biodiversity and Conservation of Plants in Brazil. Conservation Biology 19: 632–639. DOI: 10.1111/j.1523-1739.2005.00704.x.

    Article  Google Scholar 

  • Granville JJ (1984) Monocotyledons and pteridophytes indicators of environmental constraints in the tropical vegetation. Candollea 39: 265–269.

    Google Scholar 

  • Heywood VH, Iriondo JM (2003) Plant conservation: old problems, new perspectives. Biological Conservation 113: 321–335. DOI: 10.1016/S0006-3207(03)00121-6

    Article  Google Scholar 

  • Jacobi CM, Carmo FF, Vincent RC, et al. (2007) Plant communities on ironstone outcrops: a diverse and endangered Brazilian ecosystem. Biodiversity and Conservation 16: 1–17. DOI: 10.1007/s10531-007-9156-8

    Article  Google Scholar 

  • Jobbagy EG, Paruelo JM, Leon RJC (1996) Vegetation heterogeneity and diversity in flat and mountain landscapes of Patagonia (Argentina). Journal of Vegetation Science 7:599–608. DOI: 10.2307/3236310

    Article  Google Scholar 

  • Köppen W (1900) Climate classification attempt, mainly according to its relationship with plant world (Versuch einer Klassifikation der Klimate, vorzugsweise nach ihren Beziehungen zur Pflanzenwelt). Geographische Zeitschrift 6: 593–611, 657-679. (In German)

    Google Scholar 

  • Lista de Espécies da Flora do Brasil (2013) Species list of Brazil flora. Availabe online: http://floradobrasil.jbrj.gov.br/ (Accessed on 19 January 2014) (In portuguese)

  • Lara AC, Fernandes GW (1996) The highest diversity of galling insects: Serra do Cipo, Brazil. Biodiversity Letters 3: 111–114.

    Article  Google Scholar 

  • Legendre P, Legendre L (1998) Numerical Ecology, 2nd ed. Elsevier Science BV, Amsterdam, Netherlands.

    Google Scholar 

  • Madeira J, Fernandes GW (1999) Reproductive phenology of sympatric taxa of Chamaecrista (Leguminosae) in Serra do Cipo. Journal of Tropical Ecology 15: 463–479.

    Article  Google Scholar 

  • Meguro M, Pirani JR, Giulietti AM, et al. (1994) Phytophysiognomy & composition of the vegetation of Serra do Ambrosio, Minas Gerais, Brazil. Revista Brasileira de Botânica 17: 149–166.

    Google Scholar 

  • Mello-Silva R (1995) Taxonomic, biogeographic, morphologic and biological aspects of Velloziaceae of Grâo-Mogol, Minas Gerais, Brazil (Aspectos taxonômicos, biogeograficos, morfologicos e biologicos das Velloziaceae de Grâo-Mogol, Minas Gerais, Brasil). Boletim de Botânica da Universidade de Sâo Paulo 14: 49–79. (In portuguese)

    Article  Google Scholar 

  • Mendonça MP, Lins LV (2000) Red list of threatened plant species of Minas Gerais (Lista Vermelha das Espécies Ameaçadas de Extinçâo da Flora de Minas Gerais). Biodiversitas & Fundaçâo Zoo-Botânica de Belo Horizonte, Belo Horizonte, Brazil. (In portuguese)

    Google Scholar 

  • Mueller-Dombois D, Ellenberg H (1974) Aims and methoods in vegetation ecology. John Wiley & Sons, New York, US. p 547.

    Google Scholar 

  • Negreiros D, Le Stradic S, Fernandes GW, et al. (2014) CSR analysis of plant functional types in highly diverse tropical grasslands of harsh environments. Plant Ecology 215: 379–388. DOI: 10.1007/s11258-014-0302-6

    Article  Google Scholar 

  • Overbeck GE, Pfadenhauer J (2007) Adaptive strategies in burned subtropical grassland in southern Brazil. Flora 202: 27–49. DOI: 10.1016/j.flora.2005.11.004.

    Article  Google Scholar 

  • Pirani JR, Mello-Silva R, Giulietti AM (2003) Grâo-Mogol flora, Minas Gerais, Brazil (Flora de Grâo-Mogol, Minas Gerais, Brasil). Boletim de Botânica da Universidade de Sâo Paulo 21: 1–24. (In portuguese)

    Article  Google Scholar 

  • Porembski S, Barthlott W (2000) Granitic and gneissic outcrops (inselbergs) as centers of diversity for desiccation-tolerant vascular plants. Plant Ecology 151: 19–28. DOI: 10.1023/ A:1026565817218

    Article  Google Scholar 

  • Price MF (1998) Mountains: globally important ecosystems. UNASYLVA-FAO 195: 3–12.

    Google Scholar 

  • R Development Core Team (2010) R: A language and environment for statistical computing. Vienna (Austria): R Foundation for Statistical Computing.

  • Ribeiro KT, Freitas L (2010) Impactos potenciais das alteraçoes no Codigo Florestal sobre a vegetaçâo de campos rupestres e campos de altitude [Potential impacts of environmental code alteration on campo rupestre and campo de altitude vegetation]. Biota Neotropica 10: 1–8. (In portuguese)

    Article  Google Scholar 

  • Sarmiento G (1984) The ecology of Neotropical Savannas. Harvard University Press, Cambridge, UK. p 235.

    Google Scholar 

  • Scarano FR (2007) Rock outcrop vegetation in Brazil: a brief overview. Revista Brasileira de Botânica 30: 561–568. DOI: 10.1590/S0100-84042007000400002

    Google Scholar 

  • Schaefer CE, Ker JC (2003) Soils and vegetation of the altitudinal rupestrian complexes of Mantiqueira and Espinhaço (Solos e vegetaçâo nos complexos rupestres de altitude da mantiqueira e do espinhaço). Floresta e Ambiente 10: 76–85. (In portuguese)

    Google Scholar 

  • Silva JMC, Bates JM (2002) Biogeographic Patterns and Conservation in the South American Cerrado: A Tropical Savanna Hotspot. Bioscience 52: 225–234. DOI: 10.1641/ 0006-3568(2002)052[0225:BPACIT]2.0.CO;2

    Article  Google Scholar 

  • Sokal RR, Rohlf FJ (1998) Biometry: The Principles and Practice of Statistics in Biological Research. 3rd. WH Freeman and Co, New York, USA. p 776.

    Google Scholar 

  • Soulé ME, Kohm KA (1989) Research Priorities for Conservation Biology. Island Press, Washington, USA. p 97. SpeciesLink (2002) Available online at: http://splink. cria.org.br/ (Accessed on 19 January 2014).

    Google Scholar 

  • Stanton NL (1988) The underground in grasslands. The annual review of ecology and systematics 19: 573–589. DOI: 10.1146/annurev.es.19.110188.003041

    Article  Google Scholar 

  • Turenne JF (1970) Wet season influence on humic acid dynamics in the ferrallitic and podzolic layers of savannas in French Guyana (Influence de la saison des pluies sur la dynamique des acides humiques dans les profils ferrallitiques et podzoliques sous savanes de Guyane française). Cahier ORSTOM 8:419–449. (In French)

    Google Scholar 

  • UNESCO (2005) Biosphere reserve in Latin America and the Caribbean. Available online at: http://www.unesco.org/new/ en/natural-sciences/environment/ecological-sciences/biosph ere-reserves/latin-america-and-the-caribbean/ (accessed on 19 January 2014).

  • Viana LP, Lombardi JA (2007) Floristic and characterization of canga campos rupestres in the Serra da Calçada, Minas Gerais, Brazil (Floristica e caracterizaçâo dos campos rupestres sobre canga na Serra da Calçada, Minas Gerais, Brasil). Rodriguesia 58: 159–177. (In portuguese)

    Google Scholar 

  • Vitta FA (1995) Floristic composition and ecology of grassland communities in the Serra do Cipo (Composiçâo florlstica e ecologia de comunidades campestres na Serra do Cipo, Minas Gerais). Master’s thesis, Universidade de Sâo Paulo, Sâo Paulo, Brazil. (In portuguese)

    Google Scholar 

  • Wanderley MG (2011) Serra do Cipo flora, Minas Gerais: Xyridaceae (Flora da Serra do Cipo, Minas Gerais: Xyridaceae). Boletim de Botânica da Universidade de Sâo Paulo 29: 69–134. (In portuguese). DOI: 10.11606/issn.2316-9052.v29i1p69-134.

    Article  Google Scholar 

  • White PS, Jentsch A (2001) The search for generality in studies of disturbance and ecosystem dynamics. Progress in Botany 62: 399–450.

    Article  Google Scholar 

  • Zappi DC, Lucas E, Stannard B, et al. (2003) Vascular plant list of Catolés, Chapada Diamantina, Bahia, Brazil (Lista das plantas vasculares de Catolés, Chapada Diamantina, Bahia, Brasil). Boletim de Botãnica da Universidade de São Paulo 21: 345–398. (In portuguese)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soizig Le Stradic.

Additional information

http://orcid.org/0000-0003-2643-3544

http://orcid.org/0000-0002-3640-8134

http://orcid.org/0000-0003-1559-6049

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Le Stradic, S., Buisson, E. & Fernandes, G.W. Vegetation composition and structure of some Neotropical mountain grasslands in Brazil. J. Mt. Sci. 12, 864–877 (2015). https://doi.org/10.1007/s11629-013-2866-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11629-013-2866-3

Keywords

Navigation