Skip to main content

Advertisement

Log in

CSR analysis of plant functional types in highly diverse tropical grasslands of harsh environments

  • Published:
Plant Ecology Aims and scope Submit manuscript

Abstract

The classification of plant species according to the CSR ecological strategy scheme has been proposed as a common language that allows comparison among species, communities, and floras. Although several studies on European continent have demonstrated a consistent association between CSR strategies and key ecosystem processes, studies of this type are still lacking in other ecoregions worldwide. For the first time, the CSR strategy scheme is applied in a tropical plant community. In a Brazilian mountain grassland ecosystem characterized by both high biodiversity and environmental stress, we sampled various functional traits of 48 herbaceous species in stony and sandy grasslands, and evaluated the relationship between CSR strategies and functional traits with several environmental parameters. The extremely infertile soils in the two studied habitats may have acted as a major environmental filter leading to a clear predominance of the stress-tolerant strategy in both communities. However, fine-scale environmental differences between the two communities resulted in the filtering of distinct functional trait values. The sites with coarser soil texture, lower percentage of plant cover and (paradoxically) higher mineral nutrient concentrations favored plants with narrower leaves, higher stress tolerance, lower competitiveness, and higher sclerophylly (i.e., lower specific leaf area and higher leaf dry matter content). The comparison between the functional character of stony and sandy communities evidenced the influence of soil texture and water availability in the environmental filtering. This study highlighted the validity of the CSR classification outside the temperate region where it was originally developed and corroborated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aerts R, Chapin FS (2000) The mineral nutrition of wild plants revisited: a re-evaluation of processes and patterns. Adv Ecol Res 30:1–67

    Article  CAS  Google Scholar 

  • Batalha MA, Silva IA, Cianciaruso MV, França H, Carvalho GH (2011) Phylogeny, traits, environment, and space in cerrado plant communities at Emas National Park (Brazil). Flora 206:949–956

    Article  Google Scholar 

  • Benites VM, Schaefer CER, Simas FNB, Santos HG (2007) Soil associated with rock outcrops in the Brazilian mountain ranges Mantiqueira and Espinhaço. Rev Bras Bot 30:569–577

    Article  Google Scholar 

  • Caccianiga M, Luzzaro A, Pierce S, Ceriani RM, Cerabolini B (2006) The functional basis of a primary succession resolved by CSR classification. Oikos 112:10–20

    Article  Google Scholar 

  • Carvalho F, Souza FA, Carrenho R, Moreira FMS, Jesus EC, Fernandes GW (2012) The mosaic of habitats in the high-altitude Brazilian rupestrian fields is a hotspot for arbuscular mycorrhizal fungi. Appl Soil Ecol 52:9–19

    Article  Google Scholar 

  • Cerabolini BEL, Brusa G, Ceriani RM, de Andreis R, Luzzaro A, Pierce S (2010a) Can CSR classification be generally applied outside Britain? Plant Ecol 210:253–261

    Article  Google Scholar 

  • Cerabolini B, Pierce S, Luzzaro A, Ossola A (2010b) Species evenness affects ecosystem processes in situ via diversity in the adaptive strategies of dominant species. Plant Ecol 207:333–345

    Article  Google Scholar 

  • Chapin FS, Autumn K, Pugnaire F (1993) Evolution of suites of traits in response to environmental stress. Am Nat 142:578–592

    Google Scholar 

  • Chessel D, Dufour AB, Thioulouse J (2004) The ade4 package-I: one-table methods. R News 4:5–10

    Google Scholar 

  • Cornelissen JHC, Lavorel S, Garnier E, Díaz S, Buchmann N, Gurvich DE, Reich PB, ter Steege H, Morgan HD, van der Heijden MGA, Pausas JG, Poorter H (2003) A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Aust J Bot 51:335–380

    Article  Google Scholar 

  • Díaz S, Hodgson JG, Thompson K, Cabido M, Cornelissen JHC et al (2004) The plant traits that drive ecosystems: evidence from three continents. J Veg Sci 15:295–304

    Article  Google Scholar 

  • Díaz S, Lavorel S, de Bello F, Quétier F, Grigulis K, Robson TM (2007) Incorporating plant functional diversity effects in ecosystem service assessments. Proc Natl Acad Sci USA 104:20684–20689

    Article  PubMed Central  PubMed  Google Scholar 

  • Dolédec S, Chessel D, ter Braak CJF, Champely S (1996) Matching species traits to environmental variables: a new three-table ordination method. Environ Ecol Stat 3:143–166

    Article  Google Scholar 

  • Dray S, Dufour AB (2007) The ade4 package: implementing the duality diagram for ecologists. J Stat Softw 22:1–20

    Google Scholar 

  • Dray S, Legendre P (2008) Testing the species traits–environment relationships: the fourth-corner problem revisited. Ecology 89:3400–3412

    Article  PubMed  Google Scholar 

  • Echternacht L, Trovó M, Oliveira CT, Pirani JR (2011) Areas of endemism in the Espinhaço Range in Minas Gerais, Brazil. Flora 206:782–791

    Article  Google Scholar 

  • Empresa Brasileira de Pesquisa Agropecuária—EMBRAPA (1997) Manual de métodos e análises de solo, 2nd edn. EMBRAPA/CNPSO, Rio de Janeiro

    Google Scholar 

  • Frenette-Dussault C, Shipley B, Meziane D, Hingrat Y (2013) Trait-based climate change predictions of plant community structure in arid steppes. J Ecol 101:484–492

    Article  Google Scholar 

  • Giulietti AM, Pirani JR, Harley RM (1997) Espinhaço range region, eastern Brazil. In: Davis SD, Heywood VH, Herrera-MacBryde O, Villa-Lobos J, Hamilton AC (eds) Centres of plant diversity: a guide and strategy for their conservation. WWF/IUCN, Cambridge, pp 397–404

    Google Scholar 

  • Grime JP (1977) Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. Am Nat 111:1169–1194

    Article  Google Scholar 

  • Grime JP (1998) Benefits of plant diversity to ecosystems: immediate, filter and founder effects. J Ecol 86:901–910

    Article  Google Scholar 

  • Grime JP (2001) Plant strategies, vegetation processes and ecosystem properties, 2nd edn. Wiley, Chichester

    Google Scholar 

  • Grime JP, Pierce S (2012) The evolutionary strategies that shape ecosystems. Wiley-Blackwell, Chichester

    Book  Google Scholar 

  • Grime JP, Thompson K, Hunt R, Hodgson JG, Cornelissen JHC et al (1997) Integrated screening validates primary axes of specialisation in plants. Oikos 79:259–281

    Article  Google Scholar 

  • Hodgson JG, Wilson PJ, Hunt R, Grime JP, Thompson K (1999) Allocating C–S–R plant functional types: a soft approach to a hard problem. Oikos 85:282–294

    Article  Google Scholar 

  • Lavorel S, Garnier E (2002) Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy Grail. Funct Ecol 16:545–556

    Article  Google Scholar 

  • Lavorel S, Grigulis K, Lamarque P, Colace M-P, Garden D, Girel J, Douzet R, Pellet G (2011) Using plant functional traits to understand the landscape-scale distribution of multiple ecosystem services. J Ecol 99:135–147

    Article  Google Scholar 

  • Le Stradic S (2012) Composition, phenology and restoration of campo rupestre mountain grasslands—Brazil. PhD thesis, Université d’Avignon et des Pays de Vaucluse, Avignon & Universidade Federal de Minas Gerais, Belo Horizonte

  • Madeira J, Fernandes GW (1999) Reproductive phenology of sympatric taxa of Chamaecrista (Leguminosae) in Serra do Cipó. J Trop Ecol 15:463–479

    Article  Google Scholar 

  • Martinelli G, Moraes MA (2013) Livro vermelho da flora do Brasil. Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Centro Nacional de Conservação da Flora, Rio de Janeiro

    Google Scholar 

  • Massant W, Godefroid S, Koedam N (2009) Clustering of plant life strategies on meso-scale. Plant Ecol 205:47–56

    Article  Google Scholar 

  • Mcg King W, Wilson JB (2006) Differentiation between native and exotic plant species from a dry grassland: fundamental responses to resource availability, and growth rates. Austral Ecol 31:996–1004

    Article  Google Scholar 

  • Messias MCTB, Leite MGP, Meira Neto JAA, Kozovits AR, Tavares R (2013) Soil–vegetation relationship in quartzitic and ferruginous Brazilian rocky outcrops. Folia Geobot 48:509–521

    Article  Google Scholar 

  • Mokany K, Ash J, Roxburgh S (2008) Functional identity is more important than diversity in influencing ecosystem processes in a temperate native grassland. J Ecol 96:884–893

    Article  Google Scholar 

  • Navas ML, Roumet C, Bellmann A, Laurent G, Garnier E (2010) Suites of plant traits in species from different stages of a Mediterranean secondary succession. Plant Biol 12:183–196

    Article  CAS  PubMed  Google Scholar 

  • Negreiros D, Fernandes GW, Silveira FAO, Chalub C (2009) Seedling growth and biomass allocation of endemic and threatened shrubs of rupestrian fields. Acta Oecol 35:301–310

    Article  Google Scholar 

  • Pavoine S, Vela E, Gachet S, de Bélair G, Bonsall MB (2011) Linking patterns in phylogeny, traits, abiotic variables and space: a novel approach to linking environmental filtering and plant community assembly. J Ecol 99:165–175

    Article  Google Scholar 

  • Pierce S, Luzzaro A, Caccianiga M, Ceriani RM, Cerabolini B (2007) Disturbance is the principal α-scale filter determining niche differentiation, coexistence and biodiversity in an alpine community. J Ecol 95:698–706

    Article  Google Scholar 

  • Pierce S, Brusa G, Sartori M, Cerabolini B (2012) Combined use of leaf size and economics traits allows direct comparison of hydrophyte and terrestrial herbaceous adaptive strategies. Ann Bot 109:1047–1053

    Article  PubMed Central  PubMed  Google Scholar 

  • Saporetti-Junior AW, Schaefer CEGR, Souza AL, Soares MP, Araújo DSD, Meira-Neto JAA (2012) Influence of soil physical properties on plants of the Mussununga ecosystem, Brazil. Folia Geobot 47:29–39

    Article  Google Scholar 

  • Silva DM, Batalha MA (2011) Defense syndromes against herbivory in a cerrado plant community. Plant Ecol 212:181–193

    Article  Google Scholar 

  • Silva FC, Eira PA, Van Raij B, Silva CA, Abreu CA, Gianello C, Pérez DV, Quaggio JA, Tedesco MJ, Abreu MF, Barreto WO (1999) Análises químicas para a avaliação da fertilidade do solo. In: Silva FC (ed) Manual de análises químicas de solos, plantas e fertilizantes. EMBRAPA, Brasília, pp 75–169

    Google Scholar 

  • Silveira FAO, Ribeiro RC, Oliveira DMT, Fernandes GW, Lemos-Filho JP (2012) Evolution of physiological dormancy multiple times in Melastomataceae from neotropical montane vegetation. Seed Sci Res 22:37–44

    Article  Google Scholar 

  • Suding KN, Lavorel S, Chapin FS, Cornelissen JHC, Díaz S, Garnier E, Goldberg D, Hooper DU, Jackson ST, Navas ML (2008) Scaling environmental change through the community-level: a trait-based response-and-effect framework for plants. Global Change Biol 14:1125–1140

    Article  Google Scholar 

  • R Development Core Team (2012) R: a language and environment for statistical computing. Version 2.15.1. R Foundation for Statistical Computing, Vienna. http://www.r-project.org. Accessed 23 June 2012

  • Weiher E, van der Werf A, Thompson K, Roderick M, Garnier E, Eriksson O (1999) Challenging Theophrastus: a common core list of plant traits for functional ecology. J Veg Sci 10:609–620

    Article  Google Scholar 

  • Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z et al (2004) The worldwide leaf economics spectrum. Nature 428:821–827

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We acknowledge S. Pierce for sharing perspectives and kindly answer many questions about CSR theory. We also thank F.A.O. Silveira, G.E. Overbeck and two anonymous reviewers for critical comments on early versions of the manuscript and P.L. Viana, B. Loeuille, R. Mello-Silva, L. Echternacht, N.O.M. Furtado, and F.A.O. Silveira for the botanical identifications. We thank Reserva Natural Vellozia for logistic support and Pró Reitoria de Pesquisa da UFMG, Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq 163020/2013-2, 141696/2009-5, 482720/2012, 403781/2012-4, 457519/2012-6, 303352/2010-8, 561883/2010-6, 563304/2009-3, 558250/2009-2, 476178/2008-8), Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG APQ-04105-10, 03199-13) and FAPEMIG/FAPESP/FAPESPA/VALE S.A (RDP-00048-10) for financial supports.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Wilson Fernandes.

Additional information

Communicated by Chris Lusk.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11258_2014_302_MOESM1_ESM.pdf

Online Resource 1 Functional traits of 48 herbaceous species sampled in the stony and sandy grasslands of the Serra do Cipó, MG, Brazil (PDF 37 kb)

Online Resource 2 Influence of exclusive and rare species in the detection of environmental filtering (PDF 1187 kb)

Online Resource 3 Validation of the CSR classification for a tropical grassland vegetation (PDF 804 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Negreiros, D., Le Stradic, S., Fernandes, G.W. et al. CSR analysis of plant functional types in highly diverse tropical grasslands of harsh environments. Plant Ecol 215, 379–388 (2014). https://doi.org/10.1007/s11258-014-0302-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11258-014-0302-6

Keywords

Navigation