Skip to main content
Log in

Secondary metabolites released into the rhizosphere by Fusarium oxysporum and Fusarium spp. as underestimated component of nonspecific replant disease

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background and aims

A study was performed to investigate the role of fungal metabolites released into the rhizosphere of replanted orchards as a potential biotic component of tree growth decline.

Methods

The phytotoxicity of the gamma ray-sterilized crude culture filtrates of sixteen fungal species originating from replanted apple orchards was tested in a bioassay. Low molecular weight compounds released by Fusarium spp. were analyzed.

Results

The fungal culture filtrates affected seedling growth and health with an activity that varied from growth inhibition to promotion. Three out of the six species of Fusarium tested produced species-specific mycotoxins such as equisetin and enniatin B and D (<1 μg ml−1 and <6 μg ml−1, respectively) associated with root-tip necrosis, whereas fusaric acid (80–230 μg ml−1) was associated with asymptomatic plant growth inhibition. These findings were consistent with those obtained using pure compounds. Moreover, methoxyconidiol, paecilaminol, integrastatin B and other biologically active compounds, whose fungal origin and phytotoxicity have not yet been reported, were found. in all fungal filtrates.

Conclusions

Findings suggest that i) phytopathogenicity of soil borne fungi can be expressed regardless of root infection; ii) a synergistic interaction between co-occurring mycotoxins and other biologically active compounds may explain plant growth inhibition. Iii) fungal metabolites released into soil may represent an underestimated component of nonspecific replant disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Andolfi A, Mugnai L, Luque J, Surico G, Cimmino A, Evidente A (2011) Phytotoxins produced by fungi associated with grapevine trunk diseases. Toxins 3:1569–1605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Annis SL, Goodwin PH (1997) Recent advances in the molecular genetics of plant wall-degrading enzymes produced by plant pathogenic fungi. Eur J Plant Pathol 103:1–14

    Article  CAS  Google Scholar 

  • Bacon CW, Porter JK, Norred WP, Leslie JF (1996) Production of fusaric acid by Fusarium species. Appl Environ Microbiol 62:4039–4043

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bazghaleh N, Hamel C, Gan Y, Tar'an B, Knight JD (2015) Genotype-specific variation in the structure of root fungal communities is related to chickpea plant productivity. Appl Environ Microbiol 81:2368–2377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhat MK (2000) Cellulases and related enzymes in biotechnology. Biotechnol Adv 18:355–383

    Article  CAS  PubMed  Google Scholar 

  • Blais LA, Apsimon JW, Blackwell BA, Greenhalgh R, Miller JD (1992) Isolation and characterization of enniatins from Fusarium avenaceum Daom-196490. Can J Chem 70:1281–1287

    Article  CAS  Google Scholar 

  • Braun PG (1991) The combination of Cylindrocarpon lucidum and Pythium irregulare as a possible cause of apple replant disease in Nova Scotia. Can J Plant Pathol 13:291–297

    Article  Google Scholar 

  • Braun PG, Fuller KD, McRae K, Fillmore SAE (2010) Response of “Honeycrisp®” apple trees to combinations of pre-plant fumigation, deep ripping, and hog manure compost incorporation in a soil with replant disease. Hortscience 45:1702–1207

    Google Scholar 

  • Brown W (1965) Toxin and cell-wall dissolving enzymes in relation to plant disease. Annu Rev Phytopathol 3:1–21

    Article  Google Scholar 

  • Browne GT, Connell JH, Schneider SM (2006) Almond replant disease and its management with alternative pre-plant soil fumigation treatments and rootstocks. Plant Dis 90:869–876

    Article  Google Scholar 

  • Burgess LW, Summerell BA, Bullock S, Gott KP, Backhouse D (1994) Laboratory Manual for Fusarium Research. 3rd Ed. Fusarium Research Laboratory, Department of Crop Sciences, University of Sydney and Royal Botanic Gardens, Sydney

  • Burmeister HR, Plattner RD (1987) Enniatin production by Fusarium tricinctum and its effect on germinating wheat seeds. Phytopathology 77:1483–1487

    Article  Google Scholar 

  • CAB (Commonwealth Agricultural Bureau) (1990) Description of Pathogenic Fungi and Bacteria. N.1–1000 from January 1964 to March 1990. CAB International Mycological Institute. Kluwer Acc Pub

  • Cabral A, Groenewald JZ, Rego C, Oliveira H, Crous PW (2011) Cylindrocarpon root rot: multi-gene analysis reveals novel species within the Ilyonectria radicicola species complex. Mycol Prog 11:1–34

    Google Scholar 

  • Cooke DEL, Jenkins PD, Lewis DM (1997) Production of phytotoxic spore germination liquids by Alternaria brassicae and A.brassicicola and their effect on species of the family Brassicaceae. Ann Appl Biol 131:413–426

    Article  CAS  Google Scholar 

  • Crous PW, Groenewald JZ, Risède J-M, Simoneau P, Hywel-Jones NL (2004) Calonectria species and their Cylindrocladium anamorphs: species with sphaeropedunculate vesicles. Stud Mycol 50:415–430

    Google Scholar 

  • D’Mello JPF, Placinta CM, Macdonald AMC (1999) Fusarium mycotoxins: a review of global implications for animal health, welfare and productivity. Anim Feed Sci Technol 80:183–205

    Article  Google Scholar 

  • De Melo SI, Piccinin E (1999) Toxic metabolites from culture filtrate of Fusarium oxysporum and its effects on cucumber cells and plantlets. Rev Microbiol 30:104–106

    Article  CAS  Google Scholar 

  • Fisher PJ, Petrini O (1992) Fungal saprobes and pathogens as endophytes of rice (Oryza sativa L.). New Phytol 120:137–143

    Article  Google Scholar 

  • Franke-Whittle IH, Manici LM, Insam H, Stres B (2015) Rhizosphere bacteria and fungi associated with plant growth in soils of three replanted apple orchards. Plant Soil 395:317–333

    Article  CAS  Google Scholar 

  • Fravel D, Olivain C, Alabouvette C (2003) Fusarium oxysporum and its biocontrol. New Phytol 57:493–502

    Article  Google Scholar 

  • Gang G, Miedaner T, Schuhmacher U, Schollenberger M, Geiger HH (1998) Deoxynivalenol and nivalenol production by Fusarium culmorum isolates differing in aggressiveness toward winter rye. Phytopathology 88:879–884

    Article  CAS  PubMed  Google Scholar 

  • Gordon TR, Martyn RD (1997) The evolutionary biology of Fusarium oxysporum. Annu Rev Phytopathol 35:111–128

    Article  CAS  PubMed  Google Scholar 

  • Grabley S, Hammann P, Klein R, Seibert G, Winkler I, Kröger A, Ditzel F (1992) Secondary metabolites by chemical screening. 17. Nigericinol derivatives: synthesis, biological activities, and modeling studies. J Med Chem 6:939–944

    Article  Google Scholar 

  • Gur A, Cohen Y (1989) The peach replant problem—some causal agents. Soil Biol Biochem 21:829–834

    Article  Google Scholar 

  • Gur A, Cohen Y, Katan J, Barkai Z (1991) Preplant application of soil fumigants and solarization for treating replant diseases of peaches and apples. Sci Hortic 45:215–224

    Article  CAS  Google Scholar 

  • Hartman GL, Huang YH, Li S (2004) Phytotoxicity of Fusarium solani culture filtrates from soybeans and other hosts assayed by stem cuttings. Australas Plant Path 33:9–15

    Article  Google Scholar 

  • Henriksson G, Akin DE, Hanlin RT, Rodriguez C, Archibald D, Rigsby LL, Eriksson KEL (1997) Identification and retting efficiencies of fungi isolated from dew-retted flax in the United States and Europe. Appl Environ Microbiol 63:3950–3956

    CAS  PubMed  PubMed Central  Google Scholar 

  • Herrmann M, Zocher R, Haese A (1996) Enniatin production by Fusarium strains and its effect on potato tuber tissue. Appl Environ Microbiol 62:393–398

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hine RB (1961) The role of fungi in the peach replant problem. Plant Dis Rep 45:462–466

    Google Scholar 

  • Hong-Sheng W, Wei B, Dong-Yang L, Ning L, Rong-Rong Y, Waseem R, Qi-Rong S (2008) Effect of fusaric acid on biomass and photosynthesis of watermelon seedlings leaves. Caryologia 61:258–268

    Article  Google Scholar 

  • Howlett BJ (2006) Secondary metabolite toxins and nutrition of plant pathogenic fungi. Curr Opin Plant Biol 9:371–375

    Article  CAS  PubMed  Google Scholar 

  • Jayasankar S, Gray DJ (2005) In vitro plant pathology. In: Gray DJ and Trigiano RN (eds) Plant Development and Biotecnology. CRC press, Boca Raton, pp. 293–300

  • Kämper JT, Kämper U, Rogers LM, Kolattukudy PE (1994) Identification of regulatory elements in the cutinase promoter from Fusarium solani f. Sp. pisi (Nectria haematococca). J Biol Chem 269:9195–9204

    PubMed  Google Scholar 

  • Kelderer M, Manici LM, Caputo F, Thalheimer M (2012) Planting in the ‘inter-row’ to overcome replant disease in apple orchards: a study on the effectiveness of the practice based on microbial indicators. Plant Soil 357:381–393

    Article  CAS  Google Scholar 

  • Kim S, Thiessen PA, Bolton EE, Chen J, Fu G, Gindulyte A, Han L, He J, He S, Shoemaker BA et al (2016) PubChem substance and compound databases. Nucleic Acids Res 44:D1202–D1213

    Article  PubMed  Google Scholar 

  • Laggner C, Schieferer C, Fiechtner B, Poles G, Hoffmann RD, Glossmann H, Langer T, Moebius FF (2005) Discovery of high-affinity ligands of sigma1 receptor, ERG2, and emopamil binding protein by pharmacophore modeling and virtual screening. J Med Chem 48:4754–4764

    Article  CAS  PubMed  Google Scholar 

  • Madden LV, Knoke JK, Louie R (1982) Considerations for the use of multiple comparison procedures in phytopathological investigations. Phytopathology 72:1015–1017

    Article  Google Scholar 

  • Mai WF, Abawi GS (1981) Controlling replant disease of pome and stone fruits in northeastern unites stated by pre-plant fumigation. Plant Dis 65:859–864

    Article  Google Scholar 

  • Manici LM, Bonora P (2007) Molecular genetic variability of Italian binucleate Rhizoctonia spp. isolates from strawberry. Eur J Plant Pathol 118:31–42

    Article  CAS  Google Scholar 

  • Manici LM, Caputo F (2010) Soil fungal communities as indicators for replanting new peach orchards in intensively cultivated areas. Eur J Agron 33:188–196

    Article  Google Scholar 

  • Manici LM, Ciavatta C, Kelderer M, Erschbaumer G (2003) Replant problems in South Tyrol: role of fungal pathogens and microbial population in conventional and organic apple orchards. Plant Soil 256:315–324

    Article  CAS  Google Scholar 

  • Manici LM, Kelderer M, Franke-Whittle I, Rühmer T, Baab G, Nicoletti F, Caputo F, Topp A, Insam H, Naef A (2013) Relationship between root-endophytic microbial communities and replant disease in specialized apple growing areas in Europe. Appl Soil Ecol 72:207–214

    Article  Google Scholar 

  • Manici LM, Kelderer M, Caputo F, Mazzola M (2015) Auxin-mediated relationships between apple plants and root inhabiting fungi: impact on root pathogens and potentialities of growth-promoting populations. Plant Pathol 64:843–851

    Article  CAS  Google Scholar 

  • Mazzola M (1998) Elucidation of the microbial complex having a causal role in the development of apple replant disease in Washington. Phytopathology 88:930–938

    Article  CAS  PubMed  Google Scholar 

  • Mazzola M, Manici LM (2012) Apple replant disease: role of microbial ecology in cause and control. Annu Rev Phytopathol 50:45–65

    Article  CAS  PubMed  Google Scholar 

  • Mircetich SM (1971) The role of Pythium in feeder roots of diseased and symptomless peach trees in the orchard soils in peach tree decline. Phytopathology 61:351–360

    Google Scholar 

  • Nelson PE, Toussoun TA, Marasas WFO (1983) Fusarium Species: An Illustrated Manual for Identification. Pennsylvania State University Press London

  • OECD (2003) Proposal for updating Guideline for Testing of Chemicals 208. OECD Draft Document. September 2003

  • Ogawa JM, English H, Wilson EE (1991) Wood decay of fruit and nut trees. In: Ogawa JM and English H (eds) Diseases of Temperate Zone Tree Fruit and Nut Crops. University of California, Division of Agriculture and Natural Resources,Oakland, pp 292–295

  • Olsson L, Christensen TMIE, Hansen KP, Palmqvist EA (2003) Influence of the carbon source on production of cellulases, hemicellulases and pectinases by Trichoderma reesei RUT C-30. Enzym Microb Technol 33:612–619

    Article  CAS  Google Scholar 

  • Packa D, Koczowska I (1987) The effect of Fusarium culmorum /W.G smith/ and Fusarium nivale /Fr./ces. Metabolites on germination, seedling growth and cytological disturbances of rye, wheat and triticale. Mycotoxin research 3:82–85

    Article  PubMed  Google Scholar 

  • Patrick ZA, Tousson TA, Wilson JF (1964) Effect of crop residue decomposition products on plant roots. Annu Rev Phytopathol 2:267–292

    Article  CAS  Google Scholar 

  • Petit E, Gubler WD (2005) Characterization of Cylindrocarpon species, the cause of black foot disease of grapevine in California. Plant Dis 89:1051–1059

    Article  CAS  Google Scholar 

  • Postma J, Luttikholt AJG (1996) Colonization of carnation stems by a nonpathogenic isolate of Fusarium oxysporum and its effect on Fusarium oxysporum f. Sp. dianthi. Can J Bot 74:1841–1851

    Article  Google Scholar 

  • Redman RS, Dunigan DD, Rodriguez RJ (2001) Fungal symbiosis from mutualism to parasitism: who controls the outcome, host or invader? New Phytol 151:705–716

    Article  Google Scholar 

  • Reignault P, Valette-Collet O, Boccara M (2008) The importance of fungal pectinolytic enzymes in plant invasion, host adaptability and symptom type. Eur J Plant Pathol 120:1–11

    Article  CAS  Google Scholar 

  • Rinu K, Sati P, Pandey A (2014) Trichoderma gamsii (NFCCI 2177): a newly isolated endophytic, psychrotolerant, plant growth promoting, and antagonistic fungal strain. J Basic Microbiol 54:408–417

    Article  CAS  PubMed  Google Scholar 

  • Schulz B, Rommert AK, Dammann U, Aust HJ, Strack D (1999) The endophyte–host interaction: a balanced antagonism? Mycol Res 10:1275–1283

    Article  Google Scholar 

  • Shimizu B-i, Saito F, Miyagawa H, Watanabe K, Ueno T, Sakata K, Ogawa K (2005) Phytotoxic components produced by pathogenic Fusarium against morning glory. Z Naturforsch 60c:862–866

    Google Scholar 

  • Simon-Levert A, Aze A, Bontemps-Subielos N, Banaigs B, Genevière AM (2007) Antimitotic activity of methoxyconidiol, a meroterpene isolated from an ascidian. Chem Biol Interact 168:106–116

    Article  CAS  PubMed  Google Scholar 

  • Simon-Levert A, Menniti C, Soulère L, Genevière AM, Barthomeuf C, Banaigs B, Witczak A (2010) Marine natural meroterpenes: synthesis and Antiproliferative activity. Mar Drugs 8:347–358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh VK, Upadhyay RS (2014) Fusaric acid induced cell death and changes in oxidative metabolism of Solanum lycopersicum L. Bot Stud 55:66

    Article  PubMed  PubMed Central  Google Scholar 

  • Singh SB, Zink DL, Quamina DS, Pelaez F, Teran A, Felock P, Hazuda DJ (2002) Integrastatins: structure and HIV-1 integrase inhibitory activities of two novel racemic tetracyclic aromatic Heterocycles produced by two fungal species. Tetrahedron Lett 43:2351–2354

    Article  CAS  Google Scholar 

  • Spies CFJ, Mazzola M, McLeod A (2011) Characterization and detection of Pythium and Phytophthora species associated with grapevines in South Africa. Eur J Plant Pathol 131:103–119

    Article  Google Scholar 

  • St. Laurent A, Merwin IA, Fazio G, Thies JE, Brown MG (2010) Rootstock genotype succession influences apple replant disease and root-zone microbial community composition in an orchard soil. Plant Soil 337:259–272

    Article  CAS  Google Scholar 

  • Tewoldemedhin YT, Mazzola M, Mostert L, McLeod A (2011a) Cylindrocarpon species associated with apple tree roots in South Africa and their quantification using real-time PCR. Eur J Plant Pathol 129:637–651

    Article  Google Scholar 

  • Tewoldemedhin YT, Mazzola M, Spies CFJ, McLeod A (2011b) Characterization of fungi (Fusarium and Rhizoctonia) and oomycetes (Phytophthora and Pythium) associated with apple orchards in South Africa. Eur J Plant Pathol 130:215–229

    Article  CAS  Google Scholar 

  • Tewoldemedhin YT, Mazzola M, Labuschagne I, McLeod A (2011c) A multi-phasic approach reveals that apple replant disease is caused by multiple biological agents, with some agents acting synergistically. Soil Biol Biochem 43:1917–1927

    Article  CAS  Google Scholar 

  • Uhlig S, Petersen D, Flåøyen A, Wilkins A (2005) 2-amino-14,16-dimethyloctadecan-3-ol, a new sphingosine analogue toxin in the fungal genus Fusarium. Toxicon 46:513–522

    Article  CAS  PubMed  Google Scholar 

  • Ui H, Shiomi K, Suzuki H, Hatano H, Morimoto H, Yamaguchi Y, Masuma R, Sakamoto K, Kita K, Miyoshi H, Tomoda H, Tanaka H, Omura S (2006) Paecilaminol, a new NADH-fumarate reductase inhibitor, produced by Paecilomyces sp. FKI-0550. J Antibiot (Tokyo) 59:591–596

    Article  CAS  Google Scholar 

  • Urbanek H (1989) The role of cutinase and cell degrading enzymes in Fusarium pathogenesis. In: Chełkowski J (ed) Fusarium: Mycotoxins, Taxonomy and Pathogenicity. Elsevier, Amsterdam, Oxford, New York, Tokyo, pp 243–256

  • Vesonder RF, Golinski P (1989) Fusarium metabolites. In: Chelkowski J (ed) Fusarium: Mycotoxins, Taxonomy, Pathogenicity. Elsevier, Amsterdam, Oxford, New York, Tokyo, pp 1–40

  • Visconti A, Blais LA, Apsimon JW, Greenhalgh R, Miller JD (1992) Production of enniatins by Fusarium acuminatum and Fusarium compactum in liquid culture: isolation and characterization of three new enniatins, B2, B3, and B4. J Agric Food Chem 40:1076–1082

    Article  CAS  Google Scholar 

  • Weinhold AR, Sinclair J (1996) Rhizoctonia solani: penetration, colonization and plant response. In: Sneh B, Jabaji-Hare S, Neate SM, Dijst G (eds) Rhizoctonia species: taxonomy, molecular biology, ecology, pathology and disease control. Kluwer Academic, Dordrecht, pp. 163–174

    Chapter  Google Scholar 

  • Wen F, White G, VanEtten H, Xiong Z, Hawes M (2009) Extracellular DNA is required for root tip resistance to fungal infection. Plant Physiol 151:820–829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wheeler MH, Stipanovic RD, Puckhaber LS (1999) Phytotoxicity of equisetin and epi-equisetin isolated from Fusarium equiseti and F. pallidoroseum. Mycol Res 103:967–973

    Article  CAS  Google Scholar 

  • Xiong W, Zhao Q, Zhao J, Xun W, Li R, Zhang R, Wu H, Shen Q (2015) Different continuous cropping spans significantly affect microbial community membership and structure in a vanilla-grown soil as revealed by deep pyrosequencing. Microb Ecol 70:209–218

    Article  PubMed  Google Scholar 

  • Xu L, Ravnskov S, Larsen J, Nicolaisen M (2012) Linking fungal communities in roots, rhizosphere, and soil to the health status of Pisum sativum. FEMS Microbiol Ecol 82:736–745

    Article  CAS  PubMed  Google Scholar 

  • Zhu Y, Fazio G, Mazzola M (2014) Elucidating the molecular responses of apple rootstock resistant to ARD pathogens: challenges and opportunities for development of genomics-assisted breeding tools. Hortic Res 1:14043

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank dr. Rita Resca and her staff of Renolab srl (San Giorgio di Piano, Bologna, Italy) for the analysis of fungal metabolites.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. M. Manici.

Additional information

Responsible Editor: Birgit Mitter.

Electronic supplementary material

On line resource 1

Bioassay of culture filtrate toxicity using rapeseed seedlings (GIF 213 kb)

High Resolution Image (TIFF 281 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manici, L.M., Caputo, F. & Saccà, M.L. Secondary metabolites released into the rhizosphere by Fusarium oxysporum and Fusarium spp. as underestimated component of nonspecific replant disease. Plant Soil 415, 85–98 (2017). https://doi.org/10.1007/s11104-016-3152-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-016-3152-2

Keywords

Navigation