Skip to main content
Log in

The importance of fungal pectinolytic enzymes in plant invasion, host adaptability and symptom type

  • Review Paper
  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

This review describes the extent to which recent works performed in the last decade have clarified the role of different pectinase activities in pathogenicity of fungi responsible for a wide array of diseases. Beyond physiological or biochemical investigations, strategies that have been used include gene cloning and expression studies as well as gene disruption or replacement. Pectinase involvement in fungal diseases has been considered according to the type of symptoms produced by the studied fungi. Although pectinolytic enzymes are clearly important for soft rot diseases, their role cannot be anticipated for other diseases as a whole. Each symptom type must therefore be investigated separately. Moreover, before antifungal strategies can be considered, several strains and/or mutants must be analysed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Annis, S. L., & Goodwin, P. H. (1997). Recent advances in the molecular genetics of plant cell wall-degrading enzymes produced by plant pathogenic fungi. European Journal of Plant Pathology, 103, 1–14.

    Article  CAS  Google Scholar 

  • Aro, N., Pakula, T., & Penttilä, M. (2005). Transcriptional regulation of plant cell wall degradation by filamentous fungi. FEMS Microbiology Reviews, 29, 719–739.

    Article  PubMed  CAS  Google Scholar 

  • Baayen, R. P., Schoffelmeer, E. A. M., Toet, S., & Elgersma, D. M. (1997). Fungal polygalacturonase activity reflects susceptibility of carnation cultivars to Fusarium wilt. European Journal of Plant Pathology, 103, 15–23.

    Article  CAS  Google Scholar 

  • Boudart, G., Charpentier, M., Lafitte, C., Martinez, Y., Jauneau, A., Gaulin, E., et al. (2003). Elicitor activity of a fungal endopolygalacturonase in tobacco requires a functional catalytic site and cell wall localization. Plant Physiology, 131, 93–101.

    Article  PubMed  CAS  Google Scholar 

  • Cairney, J. W. G., & Burke, R. M. (1994). Fungal enzymes degrading plant cell walls: Their possible significance in the ectomycorrhizal symbiosis. Mycological Research, 98, 1345–1356.

    Article  CAS  Google Scholar 

  • Cano-Canchola, C., Acevedo, L., Ponce-Noyola, P., Flores-Martinez, A., Flores-Carreon, A., & Leal-Morales, C. A. (2000). Induction of lytic enzymes by the interaction of Ustilago maydis with Zea mays tissues. Fungal Genetics and Biology, 29, 145–151.

    Article  PubMed  CAS  Google Scholar 

  • Caprari, C., Mattei, B., Basile, M. L., Salvi, C. V., De Lorenzo, G., & Cervone, F. (1996). Mutagenesis of endopolygalacturonase from Fusarium moniliforme: Histidine residue 234 is critical for enzymatic and macerating activities and not for binding to polygalacturonase-inhibiting protein (PGIP). Molecular Plant–Microbe Interaction, 9, 617–624.

    CAS  Google Scholar 

  • Carpita, N. C., & McCann, M. (2000). The cell wall. In B. Buchanan, W. Gruissem, & R. Jones (Eds.), Biochemistry and molecular biology of plants (pp. 52–108). American Society of Plant Physiologists.

  • Cervone, F., De Lorenzo, G., Aracri, B., Bellicampi, D., Caprari, C., Clark, A. J., et al. (1996). The role of polygalacturonase, PGIP and pectin oligomers in fungal infection. In J. Visser & A. G. J. Voragen (Eds.), Pectins and pectinases (pp. 191–205). Elsevier Science.

  • Chaure, P., Gurr, S. J., & Spanu, P. (2000). Stable transformation of Erysiphe graminis, an obligate biotrophic pathogen of barley. Nature Biotechnology, 18, 205–207.

    Article  PubMed  CAS  Google Scholar 

  • Chilosi, G., & Magro, P. (1997). Pectin lyase and polygalacturonase isoenzyme production by Botrytis cinerea during the early stages of infection on different host plants. Journal of Plant Pathology, 78, 61–69.

    Google Scholar 

  • Chilosi, G., & Magro, P. (1998). Pectolytic enzymes produced in vitro and during colonization of melon tissues by Didymella bryoniae. Plant Pathology, 47, 700–705.

    Article  CAS  Google Scholar 

  • Collmer, A., & Keen, N. T. (1986). The role of pectic enzymes in plant pathogenesis. Annual Review of Phytopathology, 24, 383–409.

    Article  CAS  Google Scholar 

  • Comparini, C., Cerere, L., Capretti, P., & Scala, A. (2000). Multiple forms of pectin-degrading enzymes produced by intersterile groups P, S and F of Heterobasidion annosum. Phytopathologia Mediterranea, 39, 376–388.

    CAS  Google Scholar 

  • De Lorenzo, G., & Ferrari, S. (2002). Polygalacturonase-inhibiting proteins in defence against phytopathogenic fungi. Current Opinion in Plant Biology, 5, 295–299.

    Article  PubMed  Google Scholar 

  • Di, C., Zhang, M., Xu, S., Cheng, T., & An, L. (2006). Role of polygalacturonase-inhibiting protein in plant defense. Critical Review in Microbiology, 32, 91–100.

    Article  CAS  Google Scholar 

  • Di Matteo, A., Bonivento, D., Tsernoglou, D., Federici, L., & Cervone, F. (2006). Polygalacturonase-inhibiting protein (PGIP) in plant defence: A structural view. Phytochemistry, 67, 528–533.

    Article  PubMed  CAS  Google Scholar 

  • Di Pietro, A., & Roncero, M. I. G. (1998). Cloning, characterization and role in pathogenicity of pg1 encoding the major extracellular endopolygalacturonase of the vascular wilt pathogen Fusarium oxysporum. Molecular Plant Microbe Interactions, 11, 91–98.

    Article  PubMed  Google Scholar 

  • Douaiher, M.-N., Nowak, E., Durand, R., Halama, P., & Reignault, Ph. (2007). Correlative analysis of Mycosphaerella graminicola pathogenicity and cell wall-degrading enzymes produced in vitro: The importance of xylanase and polygalacturonase. Plant Pathology, 56, 79–86.

    Article  CAS  Google Scholar 

  • Ferrari, S., Galleti, R., Vairo, D., Cervone, F., & De Lorenzo, G. (2006). Antisense expression of the Arabidopsis thaliana AtPGIP1 gene reduces polygalacturonase-inhibiting protein accumulation and enhances susceptibility to Botrytis cinerea. Molecular Plant–Microbe Interaction, 19, 931–936.

    Article  CAS  Google Scholar 

  • Ferrari, S., Vairo, D., Ausubel, F. M., Cervone, F., & De Lorenzo, G. (2003). Tandemly duplicated Arabidopsis genes that encode polygalacturonase-inhibiting proteins are regulated coordinately by different signal transduction pathways in response to fungal infection. Plant Cell, 15, 93–106.

    Article  PubMed  CAS  Google Scholar 

  • Gao, S., Choi, G. H., Shain, L., & Nuss, D. L. (1996). Cloning and targeted disruption of enpg1, encoding the major in vitro extracellular endopolygalacturonase of the chestnut blight fungus, Cryphonectria parasitica. Applied and Environmental Microbiology, 62, 1984–1990.

    PubMed  CAS  Google Scholar 

  • Garcia-Maceira, F. I., Di Pietro, A., Huertas-Gonzales, M. D., Ruiz-Roldan, M. C., & Roncero, M. I. G. (2001). Molecular characterization of an endopolygalacturonase from Fusarium oxysporum expressed during early stages of infection. Applied and Environmental Microbiology, 67, 2191–2196.

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Maceira, F. I., Di Pietro, A., & Roncero, M. I. G. (2000). Cloning and disruption of pgx4 encoding an in planta expressed endo-polygalacturonase from Fusarium oxysporum. Molecular Plant Microbe Interactions, 13, 359–365.

    Article  PubMed  CAS  Google Scholar 

  • Götesson, A., Marshall, J. S., Jones, D. A., & Hardham, A. R. (2002). Characterisation and evolutionary analysis of a large polygalacturonase gene family in the oomycete plant pathogen Phytophthora cinnamoni. Molecular Plant Microbe Interactions, 15, 907–921.

    Article  PubMed  Google Scholar 

  • Green, F., III, & Clausen, C. A. (1999). Production of polygalacturonase and increase of longitudinal gas permeability in southern pine by brown-rot and white-rot fungi. Holzforschung, 53, 563–568.

    Article  CAS  Google Scholar 

  • Isshiki, A., Akimitsu, K., Yamamoto, M., & Yamamoto, H. (2001). Endopolygalacturonase is essential for citrus black rot caused by Alternaria citri but not brown spot caused by Alternaria alternata. Molecular Plant Microbe Interactions, 14, 749–757.

    Article  PubMed  CAS  Google Scholar 

  • Kars, I., Krooshof, G. H., Wagemakers, L., Joosten, R., Benen, J. A. E., & van Kan, J. A. L. (2005a). Necrotizing activity of five Botrytis cinerea endopolygalacturonases produced in Pichia pastoris. The Plant Journal, 43, 213–225.

    Article  PubMed  CAS  Google Scholar 

  • Kars, I., McCalman, M., Wagemakers, L., & van Kan, J. A. L. (2005b). Functional analysis of Botrytis cinerea pectin methylesterase genes by PCR-based targeted mutagenesis: Bcpme1 and Bcpme2 are dispensable for virulence of strain B05.10. Molecular Plant Pathology, 6, 641–652.

    Article  CAS  PubMed  Google Scholar 

  • Kasza, Z., Vagvolgyi, C., Fevre, M., & Cotton, P. (2004). Molecular characterization and in planta detection of Sclerotinia sclerotiorum endopolygalacturonase genes. Current Microbiology, 48, 208–213.

    Article  PubMed  CAS  Google Scholar 

  • Li, R., Rimmer, R., Buchwaldt, L., Sharpe, A. G., Seguin-Swartz, G., & Hegedus, D. D. (2004). Interaction of Sclerotinia sclerotiorum with Brassica napus: Cloning and characterization of endo- and exo-polygalacturonase expressed during saprophytic and parasitic modes. Fungal Genetics and Biology, 41, 754–765.

    Article  PubMed  CAS  Google Scholar 

  • Martel, M. B., Letoublon, R., & Fevre, M. (1998). Purification and characterization of two endopolygalacturonases secreted during the early stages of the saprophytic growth of Sclerotinia sclerotiorum. FEMS Microbiology Letters, 158, 133–138.

    Article  PubMed  CAS  Google Scholar 

  • Oeser, B., Heidrich, P. M., Müller, U., Tudzynski, P., & Tenberge, K. B. (2002) Polygalacturonase is a pathogenicity factor in the Claviceps purpurea/rye interaction. Fungal Genetics and Biology, 36, 176–186.

    Article  PubMed  CAS  Google Scholar 

  • Ouellette, G. B., Baayen, R. P., Simard, M., & Rioux, D. (1999). Ultrastructural and cytochemical study of colonization of xylem vessel elements of susceptible and resistant Dianthus caryophyllus by Fusarium oxysporum f.sp. dianthi. Canadian Journal of Botany, 77, 644–663.

    Article  Google Scholar 

  • Perroto, S., Coisson, J. D., Perugini, I., Cometti, V., & Bonfante, P. (1997). Production of pectin-degrading enzymes by ericoid mycorrhizal fungi. New Phytologist, 135, 151–162.

    Article  Google Scholar 

  • Poinssot, B., Vandelle, E., Bentejac, M., Adrian, M., Levis, C., Brygoo, Y., et al. (2003). The endopolygalacturonase 1 from Botrytis cinerea activates grapevine defence reactions unrelated to its enzymatic activity. Molecular Plant Microbe Interactions, 16, 553–564.

    Article  PubMed  CAS  Google Scholar 

  • Powell, A. L. T., van Kan, J., ten Have, A., Visser, J., Greve, L. C., Bennett A. B., et al. (2000). Transgenic expression of pear PGIP in tomato limits fungal colonization. Molecular Plant Microbe Interactions, 13, 942–950.

    Article  PubMed  CAS  Google Scholar 

  • Reignault, P., Kunz, C., Delage, N., Moreau, E., Vedel, R., Hamada, W., et al. (2000). Host and symptom-specific pectinase isozymes produced by wild-type strains and pathogenicity-altered transformants of Botrytis cinerea. Mycological Research, 104, 421–428.

    Article  CAS  Google Scholar 

  • Reignault, P., & Sancholle, M. (2001). Plant–pathogen interactions: Will the understanding of common mechanisms lead to the unification of concepts? Comptes Rendus Biologies, 328, 821–833.

    Article  Google Scholar 

  • Rogers, L. M., Kim, Y. K., Guo, W., Gonzalès-Candelas, L., Li, D., & Kolattukudy, P. E. (2000). Requirement for either a host- or pectin-induced pectate lyase for infection of Pisum sativum by Nectria hematococca. Proceedings of National Academy of Science, 97, 9813–9818.

    Google Scholar 

  • Saito, T., Tanaka, N., & Shinozawa, T. (2001). A transformation system for an ectomycorrhizal basidiomycete, Lyophyllum shimeji. Bioscience Biotechnology and Biochemistry, 65, 1928–1931.

    Article  CAS  Google Scholar 

  • Scott-Craig, J. S., Cheng, Y., Cervone, F., De Lorenzo, G., Pitkin, J. W., & Walton, J. D. (1998). Targeted mutants of Cochliobolus carbonum lacking two major extracellular polygalacturonases. Applied and Environmental Microbiology, 64, 1497–1503.

    PubMed  CAS  Google Scholar 

  • Scott-Craig, J. S., Panaccione, D. G., Cervone, F., & Walton, J. D. (1990). Endopolygalacturonase is not required for pathogenicity of Cochliobolus carbonum on maize. The Plant Cell, 2, 1191–1200.

    Article  PubMed  CAS  Google Scholar 

  • Shevchik, V. E., Boccara, M., & Hugouvieux-Cotte-Pattat, N. (1998). Processing of the pectate lyase PelI by extracellular proteases of Erwinia chrysanthemi 3937. Molecular Microbiology, 29, 1459–1469.

    Article  PubMed  CAS  Google Scholar 

  • Shieh, M., Brown, R. L., Whitehead, M. P., Cary, J. W., Cotty, P. J., Cleveland, T. E., et al. (1997). Molecular genetic evidence for the involvement of a specific polygalacturonase, P2c, in the invasion of Aspergillus flavus in cotton bolls. Applied and Environmental Microbiology, 63, 3548–3552.

    PubMed  CAS  Google Scholar 

  • Siewers, V., Viaud, M., Jimenez-Teja, D., Collado, I. G., Schulze-Gronover, C., Pradier, J.-M., et al. (2005). Functional analysis of the cytochrome P450 monooxygenase gene cbot1 of Botrytis cinerea indicates that botrydial is a strain-specific virulence factor. Molecular Plant–Microbe Interaction, 18, 602–612.

    Article  CAS  Google Scholar 

  • Suzuki, S., Komiya, Y., Mitsui, T., Tsuyumu, S., & Kunoh, H. (1999). Activity of pectinases in conidia and germlings of Blumeria graminis and the expression of genes encoding pectinases. Annals of the Phytopathological Society of Japan, 65, 131–139.

    CAS  Google Scholar 

  • Tagu, D., Marmeisse, R., Baillet, Y., Riviere, S., Palin, B., Bernardini, F., et al. (2002). Hydrophobins in ectomycorrhizas: Heterologous transcription of the Pisolithus HydPt-1 gene in yeast and Hebeloma cylindrosporum. European Journal of Histochemistry, 46, 23–29.

    PubMed  CAS  Google Scholar 

  • ten Have, A., Breuil, W. O., Wubben, J. P., Visser, J., & van Kan, J. A. L. (2001). Botrytis cinerea endopolygalacturonase genes are differentially expressed in various plant tissues. Fungal Genetics and Biology, 33, 97–105.

    Article  PubMed  CAS  Google Scholar 

  • ten Have, A., Mulder, W., Visser, J., & van Kan, J. A. L. (1998). The endopolygalacturonase gene Bcpg1 is required for full virulence of Botrytis cinerea. Molecular Plant Microbe Interactions, 11, 1009–1016.

    Article  PubMed  Google Scholar 

  • ten Have, A., Tenberge, K. B., Benen, J. A. E., Tudzynski, P., Visser, J., & van Kan, J. A. L. (2002). The contribution of cell wall degrading enzymes to pathogenesis of fungal plant pathogens. In F. Kempken (Ed.), The Mycota XI, agricultural applications (vol., pp. 341–358). Berlin: Springer.

    Google Scholar 

  • Tenberge, K. B., Homann, V., Oeser, B., & Tudzynski, P. (1996). Structure and expression of two polygalacturonase genes of Claviceps purpurea oriented in tandem and cytological evidence for pectinolytic enzyme activity during infection of rye. Phytopathology, 86, 1084–1097.

    Article  CAS  Google Scholar 

  • Tonukari, N. J., Scott-Craig, J. S. S., & Walton, J. D. (2000). The Cochliobolus carbonum SNF1 gene is required for cell wall-degrading enzyme expression and virulence on maize. The Plant Cell, 12, 237–247.

    Article  PubMed  CAS  Google Scholar 

  • Valette-Collet, O., Cimerman, A., Reignault, P., Levis, C., & Boccara, M. (2003). Disruption of Botrytis cinerea pectin methylesterase Bcpme1 gene reduces virulence on several host plants. Molecular Plant Microbe Interactions, 16, 360–367.

    Article  PubMed  CAS  Google Scholar 

  • Walton, J. D. (1994). Deconstructing the cell wall. Plant Physiology, 104, 1113–1118.

    PubMed  CAS  Google Scholar 

  • Wei, Y., Shih, J., Li, J., & Goodwin, P. H. (2002). Two pectin lyase genes, pnl-1 and pnl-2, from Colletotrichum gloeosporioides f.sp. malvae differ in a cellulose-binding domain and in their expression during infection of Malva pusilla. Microbiology, 148, 2149–2157.

    PubMed  CAS  Google Scholar 

  • Wubben, J. P., Mulder, W., ten Have, A., van Kan, J. A. L., & Visser, J. (1999). Cloning and partial characterization of endolygalacturonase genes from Botrytis cinerea. Applied and Environmental Microbiology, 65, 1569–1602.

    Google Scholar 

  • Xu, J. R., Peng, Y. L., Dickman, M. B., & Sharon, A. (2004). The dawn of fungal pathogens genomics. Annual Review of Phytopathology, 44, 337–366.

    Article  CAS  Google Scholar 

  • Yakoby, N., Beno-Moualem, D., Keen, N. T., Dinoor, A., Pines, O., Prusky, D. (2001). Colletotrichum gloeosporioides pelB is an important virulence factor in avocado fruit–fungus interaction. Molecular Plant Microbe Interactions, 14, 988–995.

    Article  PubMed  CAS  Google Scholar 

  • Yakoby, N., Freeman, S., Dinoor, A., Keen, N. T., & Prusky, D. (2000). Expression of pectate lyase from Colletotrichum gloeosporioides in C. magna promotes pathogenicity. Molecular Plant Microbe Interactions, 13, 887–891.

    Article  PubMed  CAS  Google Scholar 

  • Yan, H.-Z., & Liou, R-F. (2005). Cloning and analysis of pppg1, an inducible endopolygalacturonase gene from the oomycete plant pathogen Phytophthora parasitica. Fungal Genetics and Biology, 42, 339–350.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, J. X., Bruton, B. D., Miller, M. E., & Isabeit, T. (1999). Relationship of developmental stage of cantaloupe fruit to black rot susceptibility and enzyme production by Didymella bryoniae. Plant Disease, 83, 1025–1032.

    Article  Google Scholar 

  • Zuppini, A., Navazio, L., Sella, L., Castiglioni, C., Favaron, F., Mariani, P. (2005). An endopolygalacturonase from Sclerotinia sclerotiorum induces calcium-mediated signaling and programmed cell death in soybean cells. Molecular Plant–Microbe Interactions, 18, 849–855.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

O. Valette-Collet has been supported by a grant of “Ministère de l’Education Nationale, de la Recherche et de la Technologie”. We are indebted to Thomas Potter and Gillian Boccara for considerable improvement of English in this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ph. Reignault.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reignault, P., Valette-Collet, O. & Boccara, M. The importance of fungal pectinolytic enzymes in plant invasion, host adaptability and symptom type. Eur J Plant Pathol 120, 1–11 (2008). https://doi.org/10.1007/s10658-007-9184-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-007-9184-y

Keywords

Navigation