Skip to main content
Log in

Hydrogen enhances adaptation of rice seedlings to cold stress via the reestablishment of redox homeostasis mediated by miRNA expression

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Aims

The role of hydrogen gas (H2) in modulating cold tolerance was investigated.

Methods

A combination of physiological and molecular approaches was used to study the effect of H2 on the alleviation of cold stress.

Results

Cold stress stimulated the production of H2 in rice seedlings. The pretreatment with exogenous H2 not only mimicked above physiological response, but also prevented cold-induced growth inhibition. With 0.39 mM H2 pretreatment, rice seedlings exhibited the maximum improving responses, including alleviating the decrease of chlorophyll contents and photosynthetic activity. The lipid peroxidation and the overproduction of reactive oxygen species (ROS) were decreased as well. These results were supported by the changes of total and isozymatic activities of antioxidant enzymes. In comparison with cold stress alone, miR398 transcripts were down-regulated by H2, and expression levels of its targets Cu/Zn-SOD1 (CSD1) and Cu/Zn-SOD2 (CSD2) were increased. By contrast, miR319 transcripts were differentially increased, showing a relatively negative correlation with its target genes PROLIFERATING CELL FACTOR5 (PCF5) and PROLIFERATING CELL FACTOR8 (PCF8).

Conclusions

Our results suggested that endogenous H2 might contribute to the enhancement of cold tolerance, at least partially, by the reestablishment of redox homeostasis via miR398 and miR319.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

APX:

Ascorbate peroxidase

CAT:

Catalase

Ci:

Intercellular CO2 concentration

CSD :

Cu/Zn-SOD

DAB:

3, 3′-diaminobenzidine

GC:

Gas chromatography

Gs:

Stomatal conductance

H2 :

Hydrogen gas

miRNA:

MicroRNA

NBT:

Nitroblue tetrazolium

PCF:

Proliferating Cell Factor

Pn:

Net photosynthetic rate

POD:

Guaiacol peroxidase

ROS:

Reactive oxygen species

RWC:

Relative water content

SOD:

Superoxide dismutase

TBARS:

Thiobarbituric acid reactive substances

TCP:

TEOSINTE BRANCHED/CYCLOIDEA/PCF

References

  • Adam S, Murthy SDS (2014) Characterization of alterations in photosynthetic electron transport activities in maize thylakoid membranes under zinc stress. Eur J Exp Biol 4:25–29

    CAS  Google Scholar 

  • Baek KH, Skinner DZ (2012) Production of reactive oxygen species by freezing stress and the protective roles of antioxidant enzymes in plants. J Agric Chem Environ 1:34–40

    Google Scholar 

  • Barakat A, Sriram A, Park J, Zhebentyayeva T, Main D, Abbott A (2012) Genome wide identification of chilling responsive microRNAs in Prunus persica. BMC Genomics 13:481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beauchamp C, Fridovich I (1971) Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem 44:276–287

    Article  CAS  PubMed  Google Scholar 

  • Bellincampi D, Dipierro N, Salvi G, Cervone F, De Lorenzo G (2000) Extracellular H2O2 induced by oligogalacturonides is not involved in the inhibition of the auxin-regulated rolB gene expression in tobacco leaf explants. Plant Physiol 122:1379–1386

  • Biswal B, Joshi PN, Raval MK, Biswal UC (2011) Photosynthesis, a global sensor of environmental stress in green plants: stress signalling and adaptation. Curr Sci 101:47–56

    CAS  Google Scholar 

  • Buchholz BM, Kaczorowski DJ, Sugimoto R, Yang R, Wang Y, Billiar TR, McCurry KR, Bauer AJ, Nakao A (2008) Hydrogen inhalation ameliorates oxidative stress in transplantation induced intestinal graft injury. Am J Transplant 8:2015–2024

    Article  CAS  PubMed  Google Scholar 

  • Cardinal JS, Zhan J, Wang Y, Sugimoto R, Tsung A, McCurry KR, Billiar TR, Nakao A (2010) Oral hydrogen water prevents chronic allograft nephropathy in rats. Kidney Int 77:101–109

    Article  CAS  PubMed  Google Scholar 

  • Carrington JC, Ambros V (2003) Role of microRNAs in plant and animal development. Science 301:336–338

  • Cavazza C, Martin L, Mondy S, Gaillard J, Ratet P, Fontecilla-Camps JC (2008) The possible role of an [FeFe]-hydrogenase-like protein in the plant responses to changing atmospheric oxygen levels. J Inorg Biochem 102:1359–1365

    Article  CAS  PubMed  Google Scholar 

  • Chen L, Zhang Y, Ren Y, Xu J, Zhang Z, Wang Y (2012) Genome-wide identification of cold-responsive and new microRNAs in Populus tomentosa by high-throughput sequencing. Biochem Biophys Res Commun 417:892–896

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Jiang J, Song A, Chen S, Shan H, Luo H, Gu C, Sun J, Zhu L, Fang W, Chen F (2013) Ambient temperature enhanced freezing tolerance of Chrysanthemum dichrum CdICE1 Arabidopsis via miR398. BMC Biol 11:121

    Article  PubMed  PubMed Central  Google Scholar 

  • Cui W, Gao C, Fang P, Lin G, Shen W (2013) Alleviation of cadmium toxicity in Medicago sativa by hydrogen-rich water. J Hazard Mater 260:715–724

    Article  CAS  PubMed  Google Scholar 

  • Cui W, Fang P, Zhu K, Mao Y, Gao C, Xie Y, Wang J, Shen W (2014) Hydrogen-rich water confers plant tolerance to mercury toxicity in alfalfa seedlings. Ecotoxicol Environ Saf 105:103–111

    Article  CAS  PubMed  Google Scholar 

  • Das K, Roychoudhury A (2014) Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Front Environ Sci 2:53

    Article  Google Scholar 

  • Durner J, Klessig DF (1996) Salicylic acid is a modulator of tobacco and mammalian catalases. J Biol Chem 27:28492–28501

    Article  Google Scholar 

  • Ensminger I, Busch F, Huner NPA (2006) Photostasis and cold acclimation: sensing low temperature through photosynthesis. Physiol Plant 126:28–44

    Article  CAS  Google Scholar 

  • Fukao T, Yeung E, Bailey-Serres J (2011) The submergence tolerance regulator SUB1A mediates crosstalk between submergence and drought tolerance in rice. Plant Cell 23:412–427

    Article  CAS  PubMed  Google Scholar 

  • Hammerschmidt R, Nuckles EM, Kuć J (1982) Association of enhanced peroxidase activity with induced systemic resistance of cucumber to Colletotrichum lagenarium. Physiol Plant Pathol 20:73–82

  • Han Y, Zhang J, Chen X, Gao Z, Xuan W, Xu S, Ding X, Shen W (2008) Carbon monoxide alleviates cadmium-induced oxidative damage by modulating glutathione metabolism in the roots of Medicago sativa. New Phytol 177:155–166

    CAS  PubMed  Google Scholar 

  • Hu H, Li P, Wang Y, Gu R (2014) Hydrogen-rich water delays postharvest ripening and senescence of kiwifruit. Food Chem 156:100–109

    Article  CAS  PubMed  Google Scholar 

  • Huang CS, Kawamura T, Toyoda Y, Nakao A (2010) Recent advances in hydrogen research as a therapeutic medical gas. Free Radic Res 44:971–982

    Article  CAS  PubMed  Google Scholar 

  • Huner NPA, Öquist G, Sarhan F (1998) Energy balance and acclimation to light and cold. Trends Plant Sci 3:224–230

  • Iuchi K, Imoto A, Kamimura N, Nishimaki K, Ichimiya H, Yokota T, Ohta S (2016) Molecular hydrogen regulates gene expression by modifying the free radical chain reaction-dependent generation of oxidized phospholipid mediators. Sci Rep 6:18971

  • Ivanov AG, Rosso D, Savitch LV, Stachula P, Rosembert M, Oquist G, Hurry V, Hüner NP (2012) Implications of alternative electron sinks in increased resistance of PSII and PSI photochemistry to high light stress in cold-acclimated Arabidopsis thaliana. Photosynth Res 113:191–206

    Article  CAS  PubMed  Google Scholar 

  • Janda T, Szalai G, Tari I, Páldi E (1999) Hydroponic treatment with salicylic acid decreases the effects of chilling injury in maize (Zea mays L.) plants. Planta 208:175–180

  • Jin Q, Zhu K, Cui W, Xie Y, Han B, Shen W (2013) Hydrogen gas acts as a novel bioactive molecule in enhancing plant tolerance to paraquat-induced oxidative stress via the modulation of heme oxygenase-1 signalling system. Plant Cell Environ 36:956–969

    Article  CAS  PubMed  Google Scholar 

  • Kajiyama S, Hasegawa G, Asano M, Hosoda H, Fukui M, Nakamura N, Kitawaki J, Imai S, Nakano K, Ohta M, Adachi T, Obayashi H, Yoshikawa T (2008) Supplementation of hydrogen-rich water improves lipid and glucose metabolism in patients with type 2 diabetes or impaired glucose tolerance. Nutr Res 28:137–143

    Article  CAS  PubMed  Google Scholar 

  • Kawaguchi M, Satoh Y, Otsubo Y, Kazama T (2014) Molecular hydrogen attenuates neuropathic pain in mice. PLoS One 9:e100352

    Article  PubMed  PubMed Central  Google Scholar 

  • Khanna-Chopra R (2012) Leaf senescence and abiotic stresses share reactive oxygen species-mediated chloroplast degradation. Protoplasma 249:469–481

    Article  CAS  PubMed  Google Scholar 

  • Khraiwesh B, Zhu JK, Zhu J (2012) Role of miRNAs and siRNAs in biotic and abiotic stress responses of plants. Biochim Biophys Acta 1819:137–148

    Article  CAS  PubMed  Google Scholar 

  • Kratsch HA, Wise RR (2000) The ultrastructure of chilling stress. Plant Cell Environ 23:337–350

    Article  CAS  Google Scholar 

  • Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75:843–854

    Article  CAS  PubMed  Google Scholar 

  • Lin Y, Zhang W, Qi F, Cui W, Xie Y, Shen W (2014) Hydrogen-rich water regulates cucumber adventitious root development in a heme oxygenase-1/carbon monoxide-dependent manner. J Plant Physiol 171:1–8

    Article  CAS  PubMed  Google Scholar 

  • Liu GD, Zhang H, Wang L, Han Q, Zhou SF, Liu P (2013) Molecular hydrogen regulates the expression of miR-9, miR-21 and miR-199 in LPS-activated retinal microglia cells. Int J Ophthalmol 6:280–285

  • Llave C, Kasschau KD, Rector MA, Carrington JC (2002) Endogenous and silencing-associated small RNAs in plants. Plant Cell 14:1605–1619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu XY, Huang XL (2008) Plant miRNAs and abiotic stress responses. Biochem Biophys Res Commun 368:458–462

    Article  CAS  PubMed  Google Scholar 

  • Lv DK, Bai X, Li Y, Ding XD, Ge Y, Cai H, Ji W, Wu N, Zhu YM (2010) Profiling of cold-stress-responsive miRNAs in rice by microarrays. Gene 459:39–47

    Article  CAS  PubMed  Google Scholar 

  • Mette MF, van der Winden J, Matzke M, Matzke AJ (2002) Short RNAs can identify new candidate transposable element families in Arabidopsis. Plant Physiol 130:6–9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miura K, Furumoto T (2013) Cold signaling and cold response in plants. Int J Mol Sci 14:5312–5337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nag A, King S, Jack T (2009) miR319a targeting of TCP4 is critical for petal growth and development in Arabidopsis. Proc Natl Acad Sci USA 106:22534–22539

  • Nagata K, Nakashima-Kamimura N, Mikami T, Ohsawa I, Ohta S (2009) Consumption of molecular hydrogen prevents the stress-induced impairments in hippocampus-dependent learning tasks during chronic physical restraint in mice. Neuropsychopharmacology 34:501–508

    Article  CAS  PubMed  Google Scholar 

  • Nakashima K, Tran LS, Van Nguyen D, Fujita M, Maruyama K, Todaka D, Ito Y, Hayashi N, Shinozaki K, Yamaguchi-Shinozaki K (2007) Functional analysis of a NAC-type transcription factor OsNAC6 involved in abiotic and biotic stress-responsive gene expression in rice. Plant J 51:617–630

  • Ohsawa I, Ishikawa M, Takahashi K, Watanabe M, Nishimaki K, Yamagata K, Katsura K, Katayama Y, Asoh S, Ohta S (2007) Hydrogen acts as a therapeutic antioxidant by selectively reducing cytotoxic oxygen radicals. Nat Med 13:688–694

    Article  CAS  PubMed  Google Scholar 

  • Penfield S (2008) Temperature perception and signal transduction in plants. New Phytol 179:615–628

    Article  CAS  PubMed  Google Scholar 

  • Porra RJ, Thompson WA, Kriedemann PE (1989) Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. Biochim Biophys Acta 975:384–394

    Article  CAS  Google Scholar 

  • Pottosin I, Shabala S (2016) Transport across chloroplast membranes: optimizing photosynthesis for adverse environmental conditions. Mol Plant 9:356–370

    Article  CAS  PubMed  Google Scholar 

  • Prasad PVV, Boote KJ, Allen Jr LH (2006) Adverse high temperature effects on pollen viability, seed-set, seed yield and harvest index of grain-sorghum [Sorghum bicolor (L.) Moench] are more severe at elevated carbon dioxide due to higher tissue temperatures. Agric For Meteorol 139:237–251

  • Renwick GM, Giumarro C, Siegel SM (1964) Hydrogen metabolism in higher plants. Plant Physiol 39:303–306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rubio-Somoza I, Weigel D (2011) MicroRNA networks and developmental plasticity in plants. Trends Plant Sci 16:258–264

    Article  CAS  PubMed  Google Scholar 

  • Ruelland E, Vaultier MN, Zachowski A, Hurry V (2009) Cold signalling and cold acclimation in plants. In: Jean-Claude K, Michel D (Eds) Advances in botanical research, vol 49. Academic Press, pp 35–150

  • Shafi A, Dogra V, Gill T, Ahuja PS, Sreenivasulu Y (2014) Simultaneous over-expression of PaSOD and RaAPX in transgenic Arabidopsis thaliana confers cold stress tolerance through increase in vascular lignifications. PLoS One 9:e110302

    Article  PubMed  PubMed Central  Google Scholar 

  • Sharma P, Sharma N, Deswal R (2005) The molecular biology of the low-temperature response in plants. Bioessays 27:1048–1059

  • Shi Y, Ding Y, Yang S (2015) Cold signal transduction and its interplay with phytohormones during cold acclimation. Plant Cell Physiol 56:7–15

    Article  CAS  PubMed  Google Scholar 

  • Song JB, Gao S, Wang Y, Li BW, Zhang YL, Yang ZM (2016) miR394 and its target gene LCR are involved in cold stress response in Arabidopsis. Plant Gene 5:56–64

    Article  CAS  Google Scholar 

  • Su N, Wu Q, Liu Y, Cai J, Shen W, Xia K, Cui J (2014) Hydrogen-rich water reestablishes ROS homeostasis but exerts differential effects on anthocyanin synthesis in two varieties of radish sprouts under UV-A irradiation. J Agric Food Chem 62:6454–6462

    Article  CAS  PubMed  Google Scholar 

  • Su F, Jacquard C, Villaume S, Michel J, Rabenoelina F, Clément C, Barka EA, Dhondt-Cordelier S, Vaillant-Gaveau N (2015) Burkholderia phytofirmans PsJN reduces impact of freezing temperatures on photosynthesis in Arabidopsis thaliana. Front Plant Sci 6:810

    PubMed  PubMed Central  Google Scholar 

  • Sunkar R, Zhu JK (2004) Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. Plant Cell 16:2001–2019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sunkar R, Kapoor A, Zhu JK (2006) Posttranscriptional induction of two Cu/Zn superoxide dismutase genes in Arabidopsis is mediated by downregulation of miR398 and important for oxidative stress tolerance. Plant Cell 18:2051–2065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sunkar R, Li YF, Jagadeeswaran G (2012) Functions of microRNAs in plant stress responses. Trends Plant Sci 17:196–203

    Article  CAS  PubMed  Google Scholar 

  • Suzuki N, Mittler R (2006) Reactive oxygen species and temperature stresses: a delicate balance between signaling and destruction. Physiol Plant 126:45–51

    Article  CAS  Google Scholar 

  • Suzuki K, Nagasuga K, Okada M (2008) The chilling injury induced by high root temperature in the leaves of rice seedlings. Plant Cell Physiol 49:433–442

    Article  CAS  PubMed  Google Scholar 

  • Taura A, Kikkawa YS, Nakagawa T, Ito J (2010) Hydrogen protects vestibular hair cells from free radicals. Acta Otolaryngol 130:95–100

  • Theocharis A, Bordiec S, Fernandez O, Paquis S, Dhondt-Cordelier S, Baillieul F, Clément C, Barka EA (2012) Burkholderia phytofirmans PsJN primes Vitis vinifera L. and confers a better tolerance to low nonfreezing temperatures. Mol Plant Microbe Interact 25:241–249

  • Wang ST, Sun XL, Hoshino Y, Yu Y, Jia B, Sun ZW, Sun MZ, Duan XB, Zhu YM (2014) MicroRNA319 positively regulates cold tolerance by targeting OsPCF6 and OsTCP21 in rice (Oryza sativa L.). PLoS One 9:e91357

  • Woodbury W, Spencer AK, Stahman MA (1971) An improved procedure using ferricyanide for detecting catalase isozymes. Anal Biochem 44:301–305

    Article  CAS  PubMed  Google Scholar 

  • Xie G, Kato H, Sasaki K, Imai R (2009) A cold-induced thioredoxin h of rice, OsTrx23, negatively regulates kinase activities of OsMPK3 and OsMPK6 in vitro. FEBS Lett 583:2734–2738

    Article  CAS  PubMed  Google Scholar 

  • Xie Y, Mao Y, Lai D, Zhang W, Shen W (2012) H2 enhances Arabidopsis salt tolerance by manipulating ZAT10/12-mediated antioxidant defence and controlling sodium exclusion. PLoS One 7:e49800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie Y, Mao Y, Zhang W, Lai D, Wang Q, Shen W (2014) Reactive oxygen species-dependent nitric oxide production contributes to hydrogen-promoted stomatal closure in Arabidopsis. Plant Physiol 165:759–773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie Y, Zhang W, Duan X, Dai C, Zhang Y, Cui W, Wang R, Shen W (2015) Hydrogen-rich water-alleviated ultraviolet-B-triggered oxidative damage is partially associated with the manipulation of the metabolism of (iso) flavonoids and antioxidant defence in Medicago sativa. Funct Plant Biol 42:1141–1157

    CAS  Google Scholar 

  • Xin Z, Browse J (2000) Cold comfort farm: the acclimation of plants to freezing temperatures. Plant Cell Environ 23:893–902

  • Xu S, Zhu S, Jiang Y, Wang N, Wang R, Shen W, Yang J (2013) Hydrogen-rich water alleviates salt stress in rice during seed germination. Plant Soil 370:47–57

    Article  CAS  Google Scholar 

  • Xu S, Jiang M, Fu J, Liang L, Xia B, Wang R (2015) Physiological and antioxidant parameters in two Lycoris species as influenced by water deficit stress. HortSci 50:1702–1708

  • Yadav SK (2010) Cold stress tolerance mechanisms in plants. A review. Agron Sustain Dev 30:515–527

    Article  CAS  Google Scholar 

  • Yan SP, Zhang QY, Tang ZC, Su WA, Sun WN (2006) Comparative proteomic analysis provides new insights into chilling stress responses in rice. Mol Cell Proteomics 5:484–496

    Article  CAS  PubMed  Google Scholar 

  • Yang C, Li D, Mao D, Liu X, Ji C, Li X, Zhao X, Cheng Z, Chen C, Zhu L (2013) Overexpression of microRNA319 impacts leaf morphogenesis and leads to enhanced cold tolerance in rice (Oryza sativa L.). Plant Cell Environ 36:2207–2218

    Article  CAS  PubMed  Google Scholar 

  • Zeng J, Zhang M, Sun X (2013) Molecular hydrogen is involved in phytohormone signaling and stress responses in plants. PLoS One 8:e71038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Xu Y, Huan Q, Chong K (2009) Deep sequencing of Brachypodium small RNAs at the global genome level identifies microRNAs involved in cold stress response. BMC Genomics 10:449

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang Q, Chen Q, Wang S, Hong Y, Wang Z (2014) Rice and cold stress: methods for its evaluation and summary of cold tolerance-related quantitative trait loci. Rice 7:24

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Zhao X, Wang Z, Shen W, Xu X (2015) Protective effects of hydrogen-rich water on the photosynthetic apparatus of maize seedlings (Zea mays L.) as a result of an increase in antioxidant enzyme activities under high light stress. Plant Growth Regul 77:43–56

    Article  CAS  Google Scholar 

  • Zhou X, Wang G, Sutoh K, Zhu JK, Zhang W (2008) Identification of cold-inducible microRNAs in plants by transcriptome analysis. Biochim Biophys Acta 1779:780–788

    Article  CAS  PubMed  Google Scholar 

  • Zhou T, Yang X, Wang L, Xu J, Zhang X (2014) GhTZF1 regulates drought stress responses and delays leaf senescence by inhibiting reactive oxygen species accumulation in transgenic Arabidopsis. Plant Mol Biol 85:163–177

    Article  CAS  PubMed  Google Scholar 

  • Zhu J, Dong CH, Zhu JK (2007) Interplay between cold-responsive gene regulation, metabolism and RNA processing during plant cold acclimation. Curr Opin Plant Biol 10:290–295

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), the Natural Science Foundation of Jiangsu Province (BK20130683), the Fundamental Research Funds for the Central Universities (KYTZ201402), and the National Natural Science Foundation of China (J1210056 and J1310015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenbiao Shen.

Additional information

Responsible Editor: Philip John White.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, S., Jiang, Y., Cui, W. et al. Hydrogen enhances adaptation of rice seedlings to cold stress via the reestablishment of redox homeostasis mediated by miRNA expression. Plant Soil 414, 53–67 (2017). https://doi.org/10.1007/s11104-016-3106-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-016-3106-8

Keywords

Navigation