Skip to main content
Log in

Volatile organic compounds (VOCs) drive nutrient foraging in the clonal woodland strawberry, Fragaria vesca

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

A Commentary to this article was published on 04 August 2016

Abstract

Background and Aims

It was previously demonstrated that stolons of Fragaria vesca respond to patches of varying nutrient quality; however, the mechanism of patch-detection remained unknown. Here we provide support for a process by which F. vesca perceives nutrient-rich patches, consistent with nutrient foraging prior to rooting.

Methods

Volatile organic compounds (VOCs) emitted from unsterilized and sterilized field substrates were collected and analyzed by stir-bar headspace extraction gas chromatography-mass spectrometry using a method modified for soil and litter systems. Selected compounds were chosen to represent unsterilized and sterilized field substrates. These synthetic volatile compound mixtures were then applied to neutral substrate to test the ability of F. vesca to choose between unsterilized versus sterilized substrates.

Results

Primary stolons exhibited chemotropism towards unsterilized (natural) substrates and grew away from the sterilized volatile substrates when the alternate choice was a negative control. We conclude that the presence of carboxylic acids tends to stimulate stolon elongation and chemotropism while aldehydes, ketones and monoterpenes tend to suppress it.

Conclusions

We provide evidence that developing stolons of F. vesca forage for nutrient-rich patches via volatile cues similar to those emitted from the soil through microflora activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Angevine MW (1983) Variations in the demography of natural populations of the wild strawberries Fragaria vesca and F. virginiana. J Ecol 71:959–974

    Article  Google Scholar 

  • Banchio E, Xie X, Zhang H, Pare PW (2009) Soil bacteria elevate essential oil accumulation and emissions in sweet basil. J Agric Food Chem 57:653–657

    Article  CAS  PubMed  Google Scholar 

  • Barney JN, Hay AG, Weston LA (2005) Isolation and characterization of allelopathic volatiles from mugwort (Artemisia vulgaris). J Chem Ecol 31:247–265

    Article  CAS  PubMed  Google Scholar 

  • Blom D, Fabbri C, Connor EC, Schiestl FP, Klauser DR, Boller T, Eberl L, Weisskopf L (2011) Production of plant growth modulating volatiles is widespread among rhizosphere bacteria and strongly depends on culture conditions. Environ Microbiol 13:3047–3058

    Article  CAS  PubMed  Google Scholar 

  • Breeuwer P, deReu JC, Drocourt JL, Rombouts FM, Abee T (1997) Nonanoic acid, a fungal self-inhibitor, prevents germination of Rhizopus oligosporus sporangiospores by dissipation of the pH gradient. Appl Environ Microbiol 63:178–185

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cain ML (1994) Consequences of foraging in clonal plant species. Ecology 74:933–944

    Article  Google Scholar 

  • Chaparro JM, Sheflin AM, Manter DK, Vivanco JM (2012) Manipulating the soil microbiome to increase soil health and plant fertility. Biol Fertil Soils 48:489–499

    Article  Google Scholar 

  • Chikaraishi Y, Naraoka H (2006) Carbon and hydrogen variation of plant biomarkers in a plant-soil system. Chem Geol 231:190–202

    Article  CAS  Google Scholar 

  • Conrath U, Pieterse CMJ, Mauch-Mani B (2002) Priming in plant-pathogen interactions. Trends Plant Sci 7:210–216

    Article  CAS  PubMed  Google Scholar 

  • de Kroon H, Hutchings MJ (1995) Morphological plasticity in clonal plants: the foraging concept reconsidered. J Ecol 83:143–152

    Article  Google Scholar 

  • de Kroon H, Stuefer JF, Dong M, During HJ (1994) On plastic and non-plastic variation in clonal plant morphology and its ecological significance. Folia Geobot Phytotx 29:123–138

    Article  Google Scholar 

  • Dong B, Wang J, Liu R, Zhang M, Luo F, Yu F (2014) Soil heterogeneity affects ramet placement of Hydrocotyle vulgaris. J Plant Ecol 8:91–100

    Article  Google Scholar 

  • Doran JW, Zeiss MR (2000) Soil health and sustainability: managing the biotic component of soil quality. Appl Soil Ecol 15:3–11

    Article  Google Scholar 

  • Effmert U, Kalderas J, Warnke R, Piechulla B (2012) Volatile mediated interactions between bacteria and fungi in the soil. J Chem Ecol 38:665–703

    Article  CAS  PubMed  Google Scholar 

  • Engelberth J, Alborn HT, Schmelz EA, Tumlinson JH (2004) Airborne signals prime plants against insect herbivore attack. P Natl Acad Sci USA 101:1781–1785

    Article  CAS  Google Scholar 

  • Evans JP, Cain ML (1995) A spatially explicit test of foraging behavior in a clonal plant. Ecology 76:1147–1155

    Article  Google Scholar 

  • Feng X, Hills KM, Simpson AJ, Whalen JK, Simpson MJ (2011) The role of biodegradation and photo-oxidation in the transformation of terrigenous organic matter. Org Geochem 42:262–274

    Article  CAS  Google Scholar 

  • Frias I, Caldeira MT, Perez-Castineira JR, Navarro-Avino JP, Culianez-Macia FA, Kuppinger O, et al. (1996) A major isoform of the maize plasma membrane H(+)-ATPase: characterization and induction by auxin in coleoptiles. Plant Cell 8:1533–1544

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fridman Y, Elkouby L, Holland N, Vragovic K, Elbaum R, Savaldi-Goldstein S (2014) Root growth is modulated by differential hormonal sensitivity in neighboring cells. Genes Dev 28:912–920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fries N (1973) Effects of volatile organic compounds on the growth and development of fungi. Trans Br Mycol Soc 60:1–23

    Article  CAS  Google Scholar 

  • Gao Y, Xing F, Jin YJ, Nie DD, Wang Y (2012) Foraging response of clonal plants to multi-patch environmental heterogeneity: spatial preference and temporal reversibility. Plant Soil 359:131–147

    Article  Google Scholar 

  • Guo FQ, Huang LF, Zhou SY, Zhang TM, Liang YZ (2006) Comparison of the volatile compounds Atractylodes medicinal plants by headspace solid-phase microextraction-gas chromatography-mass spectrometry. Anal Chim Acta 570:73–78

    Article  CAS  Google Scholar 

  • Hodge A (2004) The plastic plant: root responses to heterogeneous supplies of nutrients. New Phytol 162:9–24

    Article  Google Scholar 

  • Insam H, Seewald MSA (2010) Volatile organic compounds (VOCs) in soils. Biol Fertil Soils 46:199–213

    Article  CAS  Google Scholar 

  • Kai M, Piechulla B (2009) Plant growth promotion due to rhizobacterial volatiles–an effect of CO2? FEBS Lett 583:3473–3477

    Article  CAS  PubMed  Google Scholar 

  • Kai M, Haustein M, Molina F, Petri A, Scholz B, Piechulla B (2009) Bacterial volatiles and their action potential. Appl Microbiol Biotechnol 81:1001–1012

    Article  CAS  PubMed  Google Scholar 

  • Kanerva S, Kitunen V, Loponen J, Smolander A (2008) Phenolic compounds and terpenes in soil organic horizon layers under silver birch, Norway spruce and scots pine. Biol Fertil Soils 44:547–556

    Article  CAS  Google Scholar 

  • Kelly CK (1990) Plant foraging - a marginal value model and coiling response in Cuscuta subinclusa. Ecology 71:1916–1925

    Article  Google Scholar 

  • Kennedy AC, Papendick RI (1995) Microbial characteristics of soil quality. J Soil Water Conserv 50:243–248

    Google Scholar 

  • Kim YC, Leveau J, Gardener BBM, Pierson EA, Pierson LS III, Ryu C (2011) The multifactorial basis for plant health promotion by plant-associated bacteria. Appl Environ Microbiol 77:1548–1555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leff JW, Fierer N (2008) Volatile organic compound (VOC) emissions from soil and litter samples. Soil Biol Biochem 40:1629–1636

    Article  CAS  Google Scholar 

  • Leyser O, Fitter A (1998) Roots are branching out in patches. Trends Plant Sci 3:203–204

    Article  Google Scholar 

  • MacArthur RH, Pianka ER (1966) On optimal use of a patchy environment. Am Nat 100:603–609

    Article  Google Scholar 

  • Mantelin S, Touraine B (2004) Plant growth-promoting bacteria and nitrate availability: impacts on root development and nitrate uptake. J Exp Bot 55:27–34

    Article  CAS  PubMed  Google Scholar 

  • McNickle GG, St. Clair CC, Cahill JF Jr (2009) Focusing the metaphor: plant root foraging behaviour. Trends Ecol Evol 8:419–426

    Article  Google Scholar 

  • Melin E, Krupta S (1971) Studies on ectomycorrhizae of pine. II. Growth inhibition of mycorrhizal fungi by volatile organic constituents of Pinus silvestris (Scots pine) roots. Physiol Plant 25:337–340

    Article  CAS  Google Scholar 

  • Minerdi D, Bossi S, Maffei ME, Gullino ML, Garibaldi A (2011) Fusarium oxysporum and its bacterial consortium promote lettuce growth and expansin A5 gene expression through microbial volatile organic compound (MVOC) emission. FEMS Microbiol Ecol 76:342–351

    Article  CAS  PubMed  Google Scholar 

  • Pare PW, Tumlinson JH (1999) Plant volatiles as a defense against insect herbivores. Plant Physiol 121:325–331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pearse IS, Gee WS, Beck JJ (2013) Headspace volatiles from 52 oak species advertise induction, species identity, and evolution, but not defense. J Chem Ecol 39:90–100

    Article  CAS  PubMed  Google Scholar 

  • Peng Y, Niklas KJ, Sun S (2012) Do plants explore habitats before exploiting them? An explicit test using two stoloniferous herbs. Chin Sci Bull 57:2425–2432

    Article  CAS  Google Scholar 

  • Petricka JJ, Winter CM, Benfey PN (2012) Control of Arabidopsis root development. Annu Rev Plant Biol 63:563–590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pyke GH (1984) Optimal foraging theory: a critical review. Annu Rev Ecol Evol Syst 15:523–575

    Article  Google Scholar 

  • Rasmann S, Kollner TG, Degenhardt J, Hiltpold I, Toepfer S, Kuhlmann U, Gershenzon J, Turlings TCJ (2005) Recruitment of entomopathogenic nematodes by insect-damaged maize roots. Nature 434:732–737

    Article  CAS  PubMed  Google Scholar 

  • Reed RC, Brady SR, Muday GK (1998) Inhibition of auxin movement from the shoot into the root inhibits lateral root development in Arabidopsis. Plant Physiol 118:1369–1378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roiloa SR, Retuerto R (2006a) Small-scale heterogeneity in soil quality influences photosynthetic efficiency and habitat selection in a clonal plant. Ann Bot 98:1043–1052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roiloa SR, Retuerto R (2006b) Development, photosynthetic activity and habitat selection of the clonal plant Fragaria vesca growing in copper-polluted soil. Funct Plant Biol 33:961–971

    Article  CAS  Google Scholar 

  • Runyon JB, Mescher MC, De Moraes CM (2006) Volatile chemical cues guide host location and host selection by parasitic plants. Science 313:1964–1967

    Article  CAS  PubMed  Google Scholar 

  • Ryu CM, Farag MA, Hu CH, Reddy MS, Wei HX, Pare PW, Kloepper JW (2003) Bacterial volatiles promote growth in Arabidopsis. P Natl Acad Sci USA 100:4927–4932

    Article  CAS  Google Scholar 

  • Schmelz EA, Alborn HT, Tumlinson JH (2001) The influence of intact-plant and excised-leaf bioassay designs on volicitin- and jasmonic acid-induced sesquiterpene volatile release in Zea mays. Planta 214:171–179

    Article  CAS  PubMed  Google Scholar 

  • Schulz S, Dickschat JS (2007) Bacterial volatiles: the smell of small organisms. Nat Prod Rep 24:814–842

    Article  CAS  PubMed  Google Scholar 

  • Simpson MJ, Simpson AJ (2012) The chemical ecology of soil organic matter molecular constituents. J Chem Ecol 38:768–784

    Article  CAS  PubMed  Google Scholar 

  • Slade AJ, Hutchings MJ (1987) The effects of nutrient availability on foraging in the clonal herb Glechoma hederacea. J Ecol 75:95–112

    Article  Google Scholar 

  • Splivallo R, Novero M, Bertea CM, Bossi S, Bonfante P (2007) Truffle volatiles inhibit growth and induce an oxidative burst in Arabidopsis thaliana. New Phytol 175:417–424

    Article  CAS  PubMed  Google Scholar 

  • Stevens KK, Jurd L, King AD, Mihara K (1971) The antimicrobial activity of citral. Experimentia 27:600–602

    Article  CAS  Google Scholar 

  • Sutherland WJ, Stillman RA (1988) The foraging tactics of plants. Oikos 52:239–244

    Article  Google Scholar 

  • Tang CX, Kuo J, Longnecker NE, Thomson CJ, Robson AD (1993) High pH causes disintegration of the root surface in Lupinus angustifolius L. Ann Bot 71:201–207

    Article  Google Scholar 

  • Tang CX, Longnecker NE, Greenway H, Robson AD (1996) Reduced root elongation of Lupinus angustifolius L by high pH is not due to decreased membrane integrity of cortical cells or low proton production by the roots. Ann Bot 78:409–414

    Article  Google Scholar 

  • Turlings TCJ, Hiltpold I, Rasmann S (2012) The importance of root-produced volatiles as foraging cues for entomopathogenic nematodes. Plant Soil 358:51–60

    Article  CAS  Google Scholar 

  • Tworkoski TJ, Benassi TE, Takeda F (2001) The effect of nitrogen on stolon and ramet growth in four genotypes of Fragaria chiloensis L. Sci Hortic 88:97–106

    Article  CAS  Google Scholar 

  • van Vuuren MMI, Robinson D, Griffiths B (1996) Nutrient inflow and root proliferation during the exploitation of a temporally and spatially discrete source of nitrogen in soil. Plant Soil 178:185–192

    Article  Google Scholar 

  • Vercammen J, Pham-Tuan H, Sandra P (2001) Automated dynamic sampling system for the on-line monitoring of biogenic emissions from living organisms. J Chromatogr A 930:39–51

    Article  CAS  PubMed  Google Scholar 

  • Vespermann A, Kai M, Piechulla B (2007) Rhizobacterial volatiles affect the growth of fungi and Arabidopsis thaliana. Appl Environ Microbiol 73:5639–5641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Viegas CA, Rosa MF, Sacorreia I, Novais JM (1989) Inhibition of yeast growth by octanoic and decanoic acids produced during ethanolic fermentation. Appl Environ Microbiol 55:21–28

    CAS  PubMed  PubMed Central  Google Scholar 

  • von Merey G, Veyrat N, Mahuku G, Valdez RL, Turlings TC, D'Alessandro M (2011) Dispensing synthetic green leaf volatiles in maize fields increases the release of sesquiterpenes by the plants, but has little effect on the attraction of pest and beneficial insects. Phytochemistry 72:1838–1847

    Article  Google Scholar 

  • Waters, EM, Watson, MA (2015) Live substrate positively affects root growth and stolon direction in the woodland strawberry, Fragaria vesca. Front Plant Sci 6:814. doi:10.3389/fpls.2015.0081

  • Whitehead CS, Nelson RM (1992) Ethylene sensitivity in germinating peanut seeds - the effect of short-chain saturated fatty-acids. J Plant Physiol 139:479–483

    Article  CAS  Google Scholar 

  • Wijesinghe DK, John EA, Beurskens S, Hutchings MJ (2001) Root system size and precision in nutrient foraging: responses to spatial pattern of nutrient supply in six herbaceous species. Ecology 89:972–983

    Article  Google Scholar 

  • Xie X, Zhang H, Pare PW (2009) Sustained growth promotion in Arabidopsis with long-term exposure to the beneficial soil bacterium Bacillus subtilis (GB03). Plant Signal Behav 4:948–953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan F, Schubert S, Mengel K (1992) Effect of low root medium pH on net proton release, root respiration, and root-growth of corn (Zea mays L) and broad bean (Vicia faba L). Plant Physiol 99:415–421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang HM, Forde BG (2000) Regulation of Arabidopsis root development by nitrate availability. J Exp Bot 51:51–59

    Article  CAS  PubMed  Google Scholar 

  • Zhang JX, Soini HA, Bruce KE, Wiesler D, Woodley SK, Baum MJ, Novotny MV (2005) Putative chemosignals of the ferret (Mustela furo) associated with individual and gender recognition. Chem Senses 30:727–737

    Article  CAS  PubMed  Google Scholar 

  • Zhang HM, Kim MS, Krishnamachari V, Payton P, Sun Y, Grimson M, Farag MA, Ryu CM, Allen R, Melo IS, Pare PW (2007) Rhizobacterial volatile emissions regulate auxin homeostasis and cell expansion in Arabidopsis. Planta 226:839–851

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Funding was provided by the Indiana University Graduate School with partial support from the Lilly Chemistry Alumni Funds (to MVN). Assistance in greenhouse maintenance was provided by the Indiana University Greenhouse Staff. Wesley Beaulieu from the Indiana University Statistical Consulting Center provided assistance with statistical analysis. J. Alexander Eilts provided the original F. vesca clone. We give a special thanks to Andrew Bruce for his assistance in the greenhouse and Ross Wilkerson for help with graphical development.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erica M. Waters.

Additional information

Responsible Editor: Hans Lambers.

Electronic Supplementary Material

ESM 1

(DOCX 12 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Waters, E.M., Soini, H.A., Novotny, M.V. et al. Volatile organic compounds (VOCs) drive nutrient foraging in the clonal woodland strawberry, Fragaria vesca . Plant Soil 407, 261–274 (2016). https://doi.org/10.1007/s11104-016-2934-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-016-2934-x

Keywords

Navigation