Skip to main content
Log in

Frankia bacteria in Alnus rubra forests: genetic diversity and determinants of assemblage structure

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

To quantify the genetic diversity of Frankia bacteria associated with Alnus rubra in natural settings and to examine the relative importance of site age, management, and geographic location in structuring Frankia assemblages in A. rubra forests, root nodules from four A. rubra sites in the Pacific Northwest, USA were sampled. Frankia genetic diversity at each site was compared using sequence-based analyses of a 606 bp fragment of the nifH gene. At a 3% sequence similarity cutoff, a total of 5 Frankia genotypes were identified from 317 successfully sequenced nodules. Sites varied in the total number of genotypes present, but were typically dominated by only one or two genotypes. Phylogenetic analyses showed that all of the A. rubra-Frankia genotypes grouped with other Alnus-infective Frankia. Analysis of similarity (ANOSIM) and chi-square analyses indicated that Frankia assemblages were more strongly influenced by site age/management than geographic location. This study demonstrates that the Frankia assemblages in A. rubra forests have low genotype diversity, but that genotype abundance can differ significantly in forests of different age/management history.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Anderson M, Ruess R, Myrold D, Taylor D (2009) Independent, consistent associations between symbiotic Frankia population parameters and both host (Alnus) species and successional habitat in interior Alaska. Oecologia 160:619–630

    Article  PubMed  Google Scholar 

  • Benson D, Silvester W (1993) Biology of Frankia strains, actinomycete symbionts of actinorhizal plants. Microbiol Rev 57:293–319

    CAS  PubMed  Google Scholar 

  • Benson D, Dawson J (2007) Recent advances in the biogeography and genecology of symbiotic Frankia and its host plants. Physiol Plant 130:318–330

    Article  CAS  Google Scholar 

  • Brose U, Martinez N, Williams R (2003) Estimating species richness: sensitivity to sample coverage and insensitivity to spatial patterns. Ecol Lett 84:2364–2377

    Google Scholar 

  • Chapin F, Walker L, Fastie C, Sharman L (1994) Mechanisms of primary succession following deglaciation at Glacier Bay, Alaska. Ecol Monogr 64:149–175

    Article  Google Scholar 

  • Chen L, Liu J, Gui Y, Yan W (2008) Genetic diversity of Frankia strains in root nodules from Hippophae rhamnoides. Botany 86:240–247

    Article  CAS  Google Scholar 

  • Clarke K, Warwick R (2001) Change in marine communities: an approach to statistical analysis and interpretation. PRIMER V, Plymouth

    Google Scholar 

  • Clawson M, Bourret A, Benson D (2004) Assessing the phylogeny of Frankia-actinorhizal plant nitrogen-fixing symbioses with Frankia 16S rRNA and glutamine synthetase gene sequences. Mol Phylogenet Evol 31:131–138

    Article  CAS  PubMed  Google Scholar 

  • Cleveland C, Townsend A, Schimel D, Fisher H, Howarth R, Hedin L, Perakis S, Latty E, Von Fischer J, Elseroad A, Wasson M (1999) Global patterns of terrestrial biological nitrogen (N2) fixation in natural ecosystems. Glob Biogeochem Cycles 13:623–645

    Article  CAS  Google Scholar 

  • Colwell R (2005) EstimateS: Statistical estimation of species richness and shared species from samples. Version 7.5 User’s guide and application published at http://purl.oclc.org/estimates

  • Colwell R, Coddington J (1994) Estimating terrestrial biodiversity through extrapolation. Philos Trans R Soc 345:101–118

    Article  CAS  Google Scholar 

  • Dai Y, He X, Zhang C, Zhang Z (2004) Characterization of genetic diversity of Frankia strains in nodules of Alnus nepalensis (D. Don) from the Henduan Mountains on the basis of PCR-RFLP analysis of the nifD-nifK IGS. Plant Soil 267:207–212

    Article  CAS  Google Scholar 

  • DeLuca T, Zackrisson O, Nilsson M, Sellstedt A (2002) Quantifying nitrogen-fixation in feather moss carpets of boreal forests. Nature 419:917–920

    Article  CAS  PubMed  Google Scholar 

  • Dillon J, Baker D (1982) Variations in nitrogenase activity among pure-cultured Frankia strains tested on actinorhizal plants as an indication of symbiotic compatibility. New Phytol 92:215–219

    Article  Google Scholar 

  • Edgar R (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797

    Article  CAS  PubMed  Google Scholar 

  • Graham P (2005) Biological dinitrogen fixation: symbiotic. In: Sylvia D, Hartel P, Fuhrmann J, Zuberer D (eds) Principles and applications of soil microbiology. Pearson, Upper Saddle River, pp 405–432

    Google Scholar 

  • Guindon S, Gascuel O (2003) A sinple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704

    Article  PubMed  Google Scholar 

  • Hibbs D, DeBell D, Tarrant R (1994) Biology and management of red alder. Oregon State University, Corvallis

    Google Scholar 

  • Huguet V, McCray-Batzli J, Zimpfer J, Normand P, Dawson J, Fernandez M (2001) Diversity and specificity of Frankia strains in nodules of sympatric Myrica gale, Alnus incana, and Shepherdia canadensis determined by rrs gene polmorphism. Appl Environ Microbiol 67:2116–2122

    Article  CAS  PubMed  Google Scholar 

  • Huguet V, Mergeay M, Cervantes C, Fernandez M (2004) Diversity of Frankia strains associated to Myrica gale in Western Europe: impact of host plant (Myrcia v. Alnus) and of edaphic factors. Environ Microbiol 6:1032–1041

    Article  CAS  PubMed  Google Scholar 

  • Igual J, Valverde A, Velazquez E, Santa Regina I, Rodriquez-Barrueco C (2006) Natural diversity of nodular microsymbionts of Alnus glutinosa in the Tormes River basin. Plant Soil 280:373–383

    Article  CAS  Google Scholar 

  • Jeong S, Ritchie N, Myrold D (1999) Molecular phylogenies of plants and Frankia support multiple origins of actinorhizal symbioses. Mol Phylogenet Evol 13:493–503

    Article  CAS  PubMed  Google Scholar 

  • Johnson F (1995) Wild trees of Idaho. University of Idaho Press, Moscow

    Google Scholar 

  • Kennedy P, Hill L (2010) A molecular and phylogenetic analysis of the structure and specificity of Alnus rubra ectomycorrhizal assemblages. Fungal Ecol. doi:10.1016/j.funeco.2009.08.005

    Google Scholar 

  • Kennedy PG, Schouboe J, Rogers R, Weber M, Nadkarni N (2010) Frankia and Alnus rubra canopy roots: an assessment of genetic diversity, propagule availability and effects on soil nitrogen. Microb Ecol 59:214–220

    Article  PubMed  Google Scholar 

  • Khan A, Myrold D, Misra A (2007) Distribution of Frankia genotypes occupying Alnus nepalensis nodules with respect to altitude and soil characteristics in the Sikkim Himalayas. Physiol Plant 130:364–371

    Article  CAS  Google Scholar 

  • Kiers E, Rousseau R, West S, Denison R (2003) Host sanctions and the legume-rhizobium mutualism. Nature 425:78–81

    Article  CAS  PubMed  Google Scholar 

  • Krebs C (1999) Ecological methodology. Benjamin/Cummings, Menlo Park

    Google Scholar 

  • Markham J (2008) Variability in nitrogen-fixing Frankia on Alnus species. Botany 86:501–510

    Article  CAS  Google Scholar 

  • Markham J, Chanway C (1996) Alnus rubra nodulation capacity of soil under five species from harvested forest sites in coastal British Columbia. Plant Soil 187:283–286

    Article  Google Scholar 

  • Markham J, Chanway C (1998) Alnus rubra (Bong.) nodule spore type distribution in southwestern British Columbia. Plant Ecol 135:197–205

    Article  Google Scholar 

  • Markham J, Chanway C (1999) Does past contact reduce the degree of mutualism in the Alnus rubra-Frankia symbiosis? Can J Bot 77:434–441

    Article  Google Scholar 

  • Martin K, Ritchie N, Myrold D (2003a) Nodulation potential of soils from red alder stands covering a wide age range. Plant Soil 254:187–192

    Article  CAS  Google Scholar 

  • Martin K, Tanaka Y, Myrold D (2003b) Dual inoculation increases plant growth with Frankia on red alder (Alnus rubra Bong.) in fumigated nursery beds. Symbiosis 34:253–260

    Google Scholar 

  • Miller R, Murray M (1978) The effects of red alder on the growth of Douglas-fir. In: Briggs D, DeBell D, Atkinson W (eds) Utilization and management of alder. USDA Forest Service, pp 283–306

  • Mirza B, Welsh A, Rasul G, Rieder M, Paschke M, Hahn D (2009) Variation in Frankia populations of the Elaeagnus host infection group in nodules of six host plant species after inoculation with soil. Microb Ecol 58:384–393

    Article  PubMed  Google Scholar 

  • Nash T (1996) Lichen biology. Cambridge University, Cambridge

    Google Scholar 

  • Navarro E, Jaffre T, Gauthier D, Gourbiere F, Rinaudo G, Simonet P, Normand P (1999) Distribution of Gymnostoma spp. microsymbiotic Frankia strains in New Caledonia is related to soil type and host-plant species. Mol Ecol 8:1781–1788

    Article  PubMed  Google Scholar 

  • Nelson E, Hansen E, Li C, Trappe J (1978) The role of red alder in reducing losses from laminated root rot. In: Briggs D, DeBell D, Atkinson W (eds) Utilization and management of alder. USDA Forest Service, pp 273–282

  • Posada D, Crandell K (1998) Modeltest: testing the model of DNA substitution. Bioinformatics 14:817–818

    Article  CAS  PubMed  Google Scholar 

  • Prat D (1989) Effects of some pure and mixed Frankia strains on seedling growth in different Alnus species. Plant Soil 113:31–38

    Article  Google Scholar 

  • Rojas N, Li C, Perry D, Ganio L (2002) Frankia and nodulation of red alder and snowbrush grown on soils from Douglas-fir forests in the H.J. Andrews experimental forest of Oregon. Appl Soil Ecol 17:141–149

    Article  Google Scholar 

  • Ronquist F, Huelsenbeck J (2003) MrBayes 3: bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574

    Article  CAS  PubMed  Google Scholar 

  • Roy S, Khasa D, Greer C (2007) Combining alders, frankiae, and mycorrhizae for the revegetation and remediation of contaminated ecosystems. Can J Bot 85:237–251

    Article  CAS  Google Scholar 

  • Schloss P, Westcott S, Ryabin T, Hall J, Hartmann M, Hollister E, Lesniewski R, Oakley B, Parks D, Robinson C, Sahl J, Stres B, Thallinger G, Van Horn D, Weber C (2009) Introducing mothur: open source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541

    Article  CAS  PubMed  Google Scholar 

  • Selmants P, Hart S, Boyle S, Stark J (2005) Red alder (Alnus rubra) alters community-level soil microbial function in conifer forests of the Pacific Northwest, USA. Soil Biol Biochem 37:1860–1868

    Article  CAS  Google Scholar 

  • Shainsky L, Radosevich S (1992) Mechanisms of competition between Douglas-fir and red alder seedlings. Ecol Lett 73:30–45

    Google Scholar 

  • Sokal R, Rohlf F (1995) Biometry: the principles and practices of statistics in biological research. Freeman, New York

    Google Scholar 

  • Spehn E, Scherer-Lorenzen M, Schmid B, Hector A, Caldeira M, Dimitrakopoulos P (2002) The role of legumes as a component of biodiversity in a cross European study of grassland biomass nitrogen. Oikos 98:205–218

    Article  Google Scholar 

  • Van Cleve K, Viereck L, Schlentner R (1971) Accumulations of nitrogen in alder (Alnus) ecosystems near Fairbanks, Alaska. Arct Alpine Res 3:101–114

    Article  Google Scholar 

  • Van der Heijden M, Bardgett R, van Straalen N (2008) The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol Lett 11

  • Vitousek P, Walker L (1989) Biological invasion of Myrica faya in Hawaii—plant demography, nitrogen fixation, ecosystem effects. Ecol Monogr 59:247–265

    Article  Google Scholar 

  • Vogel J, Gower S (1998) Carbon and nitrogen dynamics of boreal jack pine stands with and without a green alder understory. Ecosystems 1:386–400

    Article  CAS  Google Scholar 

  • Welsh A, Dawson J, Gottfried G, Hahn D (2009a) Diversity of Frankia populations in root nodules of geographically isolated Arizona alder trees in central Arizona (United States). Appl Environ Microbiol 75:6913–6918

    Article  CAS  PubMed  Google Scholar 

  • Welsh A, Mirza B, Rieder M, Pashcke M, Hahn D (2009b) Diversity of frankiae in root nodules of Morella pensylvanica grown in soils from five continents. Syst Appl Microbiol 32:201–210

    Article  PubMed  Google Scholar 

  • Zuberer D (2005) Biological dinitrogen fixation: introduction and nonsymbiotic. In: Sylvia D, Hartel P, Fuhrmann J, Zuberer D (eds) Principles and applications of soil microbiology. Pearson, Upper Saddle River, pp 373–404

    Google Scholar 

Download references

Acknowledgments

The authors thank D. Hibbs for help with use of the study sites, D. Hahn for advice about Frankia molecular protocols; D. Myrold and D. Benson for discussions about Frankia biology; A. Lundgren, A. Lipus, E. Oppelt, and J. Schouboe for lab assistance; A. Lipus and two anonymous reviewers for constructive comments on a previous version of this manuscript. Funding was provided by the M.J. Murdock Charitable Trust, Lewis & Clark College, and the National Science Foundation (DEB-0742696).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter G. Kennedy.

Additional information

Responsible Editor: Katharina Pawlowski.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Figure S1

Phylogenetic reconstruction of 17 Frankia taxa based on 522 bp of the nifH gene. This analysis was conducted to determine to which host infection group the A. rubra genotypes encountered in this study belonged. A representative of the five Alnus-infective (A1–A5) and four Elaeagnus-infective (E1–E4) sub-groups of Welsh et al. (2009a), a single representative of each A. rubra KL genotype, and the genome sequences of strains ACN14a and Ean1pec were included. Nodes are labeled with posterior probabilities from Bayesian analysis and, in parentheses, aLRT scores from Maximum Likelihood (ML) analysis. Dashes indicates that branch was not present in the Bayesian analysis. Taxa are labeled with GenBank accession number in parentheses. A Frankia sequence from Datisca cannabina was designated as the outgroup following Welsh et al. (2009a). (PS 279 kb)

Appendices

Appendix 1

Molecular analyses of Frankia nodules and experimental tests of sampling methodology

Amplification and sequencing of Frankia nifH

Within 48 h of field collection, individual nodules were surface sterilized by manual agitation in a 10% bleach solution for 2 min. The nodules were then rinsed three times with deionized water and stored at −20°C prior to DNA extraction. To extract total genomic DNA, 1–2 lobes from single individual nodule samples were macerated in 180 µL of buffer ATL from the Qiagen DNA Tissue 200 Kit (Qiagen, Carlsbad, CA). The periderm of each nodule sample was not removed prior to maceration (see below for justification). One hundred eighty µL of 20 mg/mL lysozyme was added to the homogenized tissue solution and incubated at 37°C for 30 min, as recommended for Gram-positive bacteria. The remainder of the DNA extraction was performed according to the manufacturer’s instructions.

The polymerase chain reaction (PCR) was used to amplify a 606 bp fragment of the nifH gene with the Frankia-specific primer pair nifHf1 (5′-GGC AAG TCC ACC ACC CAG C-3′) and nifHr (5′-CTC GAT GAC CGT CAT CCG GC-3′). This region was chosen because it has previously been demonstrated to differentiate among closely related Frankia genotypes occurring on the same host plant species (Welsh et al 2009a; Mirza et al. 2009; Kennedy et al. 2010). PCR amplifications were performed in 20 µL reactions containing: 0.5 µL bulk DNA, 0.4 µL of each primer (10 µM), 10 µL MasterAmp F PCR buffer (Epicenter, Madison, WI) and 0.75 U Taq Polymerase (New England Biolabs, Ipswich, MA). Samples that did not successfully amplify initially were re-run using 1:20 dilutions of the DNA template. PCR cycling conditions were as follows: 96°C for 5 min; 35 cycles at 96°C for 30 s, 64°C for 30 s, and 72°C for 45 s; and a final 7 min 72°C extension. Amplification was checked with electrophoresis on 1.5% agarose gels (GenePure LE, ISC BioExpress, Kaysville, UT). Gels were stained with ethidium bromide and visualized under UV fluorescence. All successful PCR products were cleaned using 1.5 uL of ExoSAP IT (USB Corp., Cleveland, OH) with 7.5 uL of DNA and incubated at 37°C for 45 min, followed by 80°C for 15 min. Sequencing was performed on a 3730xl DNA Analyzer (Applied Biosystems, Foster City, CA) at the Genomic Analysis and Technology Core Facility at the University of Arizona, USA.

Experimental tests of sampling methodology

To ensure our results were not biased by sampling methodology, two other analyses were performed. Previous Frankia studies on other hosts have found multiple strains per nodule (Reddell and Bowen 1985), so we tested whether multiple samples (i.e. different lobes) from the same nodule belonged to the same genotype. Five nodules were collected from multiple A. rubra individuals at Tryon Creek State Park in Portland, Oregon (N 45′27.139″, W 122′40.153″). Four lobes per nodule were removed and independently identified using the same methods described above. In all cases, the same genotype was recovered from the individual lobes of each nodule, indicating our nodule sampling method accurately captured Frankia genotype nodule richness. We also compared the interior versus periderm tissues of nine nodules from the same location to determine if periderm removal influenced genotype richness. In eight of the nine nodules, the genotype composition was identical between tissues. For the one nodule with non-matching genotypes, we believe this result was most likely caused by incomplete surface sterilization. Both of these analyses make us confident that the nodule sampling methodology did not significantly influence the observed patterns of genotype diversity.

References

Reddell P and Bowen D 1985 Frankia source affects growth, nodulation, and nitrogen fixation in Casaurina species. New Phytologist 100, 115–122.

Appendix 2

Site information for samples from which a clear nifH sequence was obtained. Samples sharing the same GenBank accession number were identical across the 518 base pairs analyzed. Site abbreviations are as follows: FC = Fox Creek, M = Mt. Hood, T = Toledo, TC = Thompson Cat.

Genotype

Site

Sample

GenBank Accession #

KL1

FC

3

GU810473

KL1

FC

26

GU810473

KL1

FC

28

GU810473

KL1

FC

32

GU810473

KL1

FC

42

GU810473

KL1

FC

49

GU810473

KL1

FC

55

GU810473

KL1

FC

62

GU810473

KL1

FC

66

GU810473

KL1

FC

67

GU810473

KL1

FC

68

GU810473

KL1

FC

76

GU810473

KL1

FC

77

GU810473

KL1

FC

78

GU810473

KL1

FC

81

GU810473

KL1

FC

82

GU810473

KL1

FC

89

GU810473

KL1

FC

92

GU810473

KL1

FC

94

GU810473

KL1

FC

95

GU810473

KL1

FC

96

GU810473

KL1

FC

98

GU810473

KL1

FC

99

GU810473

KL1

FC

100

GU810473

KL1

FC

101

GU810473

KL1

T

1

GU810473

KL1

T

2

GU810473

KL1

T

3

GU810473

KL1

T

5

GU810473

KL1

T

6

GU810473

KL1

T

7

GU810473

KL1

T

8

GU810473

KL1

T

9

GU810473

KL1

T

10

GU810473

KL1

T

11

GU810473

KL1

T

12

GU810473

KL1

T

13

GU810473

KL1

T

14

GU810473

KL1

T

15

GU810473

KL1

T

16

GU810473

KL1

T

17

GU810473

KL1

T

18

GU810473

KL1

T

19

GU810473

KL1

T

20

GU810473

KL1

T

21

GU810473

KL1

T

22

GU810473

KL1

T

23

GU810473

KL1

T

24

GU810473

KL1

T

25

GU810473

KL1

T

29

GU810473

KL1

T

30

GU810473

KL1

T

31

GU810473

KL1

T

32

GU810473

KL1

T

33

GU810473

KL1

T

34

GU810473

KL1

T

36

GU810473

KL1

T

38

GU810473

KL1

T

39

GU810473

KL1

T

40

GU810473

KL1

T

41

GU810473

KL1

T

44

GU810473

KL1

T

45

GU810473

KL1

T

46

GU810473

KL1

T

48

GU810473

KL1

T

49

GU810473

KL1

T

51

GU810473

KL1

T

52

GU810473

KL1

T

53

GU810473

KL1

T

54

GU810473

KL1

T

55

GU810473

KL1

T

56

GU810473

KL1

T

57

GU810473

KL1

T

59

GU810473

KL1

T

60

GU810473

KL1

T

61

GU810473

KL1

T

62

GU810473

KL1

T

63

GU810473

KL1

T

64

GU810473

KL1

T

65

GU810473

KL1

T

66

GU810473

KL1

T

67

GU810473

KL1

T

68

GU810473

KL1

T

69

GU810473

KL1

T

70

GU810473

KL1

T

71

GU810473

KL1

T

72

GU810473

KL1

T

73

GU810473

KL1

T

75

GU810473

KL1

T

77

GU810473

KL1

T

78

GU810473

KL1

T

79

GU810473

KL1

T

80

GU810473

KL1

T

81

GU810473

KL1

T

82

GU810473

KL1

T

83

GU810473

KL1

T

84

GU810473

KL1

T

85

GU810473

KL1

T

87

GU810473

KL1

T

88

GU810473

KL1

T

89

GU810473

KL1

T

90

GU810473

KL1

T

91

GU810473

KL1

T

92

GU810473

KL1

T

93

GU810473

KL1

T

96

GU810473

KL1

T

97

GU810473

KL1

T

98

GU810473

KL1

T

99

GU810473

KL1

TC

3

GU810473

KL1

TC

10

GU810473

KL1

TC

18

GU810473

KL1

TC

52

GU810473

KL1

TC

100

GU810473

KL1.1

M

71

HM031938

KL1.2

TC

100

HM031939

KL1.2

TC

95

HM031939

KL1.2

TC

91

HM031939

KL1.2

TC

85

HM031939

KL1.2

TC

76

HM031939

KL1.2

TC

67

HM031939

KL1.2

TC

60

HM031939

KL1.2

TC

54

HM031939

KL1.2

TC

5

HM031939

KL1.2

M

92

HM031939

KL1.2

M

84

HM031939

KL1.2

M

81

HM031939

KL1.2

M

73

HM031939

KL1.2

M

52

HM031939

KL1.2

M

14

HM031939

KL1.2

TC

28

HM031939

KL1.2

TC

61

HM031939

KL1.2

TC

59

HM031939

KL1.3

TC

84

HM031940

KL1.3

TC

83

HM031940

KL1.3

TC

79

HM031940

KL1.3

TC

77

HM031940

KL1.3

TC

71

HM031940

KL1.3

TC

68

HM031940

KL1.3

TC

66

HM031940

KL1.3

TC

64

HM031940

KL1.3

M

64

HM031940

KL1.4

M

99

HM031941

KL1.4

M

44

HM031941

KL1.4

M

43

HM031941

KL1.4

M

42

HM031941

KL1.4

M

41

HM031941

KL1.4

M

40

HM031941

KL1.4

M

30

HM031941

KL1.4

M

29

HM031941

KL1.4

M

27

HM031941

KL1.4

M

2

HM031941

KL1.5

FC

87

HM031942

KL1.5

TC

90

HM031942

KL1.5

TC

82

HM031942

KL1.5

TC

70

HM031942

KL1.5

TC

6

HM031942

KL1.5

TC

17

HM031942

KL1.5

TC

19

HM031942

KL1.5

TC

26

HM031942

KL1.5

TC

31

HM031942

KL1.5

TC

33

HM031942

KL1.5

TC

37

HM031942

KL1.5

TC

40

HM031942

KL1.5

TC

57

HM031942

KL1.5

TC

65

HM031942

KL1.5

TC

74

HM031942

KL1.5

TC

81

HM031942

KL1.5

TC

78

HM031942

KL1.6

M

50

HM031943

KL1.7

TC

39

HM031944

KL1.7

M

93

HM031944

KL1.7

M

87

HM031944

KL1.8

M

96

HM031945

KL1.9

M

89

HM031946

KL1.10

M

83

HM031947

KL1.10

M

51

HM031947

KL1.10

M

36

HM031947

KL1.11

M

85

HM031948

KL1.11

M

82

HM031948

KL1.11

M

79

HM031948

KL1.11

M

69

HM031948

KL1.11

M

62

HM031948

KL1.12

TC

20

HM031949

KL1.13

TC

13

HM031950

KL1.14

TC

53

HM031951

KL1.14

TC

51

HM031951

KL1.14

TC

50

HM031951

KL2

FC

1

GU810474

KL2

FC

5

GU810474

KL2

FC

8

GU810474

KL2

FC

10

GU810474

KL2

FC

11

GU810474

KL2

FC

12

GU810474

KL2

FC

13

GU810474

KL2

FC

18

GU810474

KL2

FC

19

GU810474

KL2

FC

20

GU810474

KL2

FC

21

GU810474

KL2

FC

22

GU810474

KL2

FC

23

GU810474

KL2

FC

24

GU810474

KL2

FC

27

GU810474

KL2

FC

29

GU810474

KL2

FC

31

GU810474

KL2

FC

33

GU810474

KL2

FC

34

GU810474

KL2

FC

35

GU810474

KL2

FC

37

GU810474

KL2

FC

38

GU810474

KL2

FC

39

GU810474

KL2

FC

40

GU810474

KL2

FC

41

GU810474

KL2

FC

45

GU810474

KL2

FC

46

GU810474

KL2

FC

47

GU810474

KL2

FC

51

GU810474

KL2

FC

59

GU810474

KL2

FC

61

GU810474

KL2

FC

63

GU810474

KL2

FC

65

GU810474

KL2

FC

71

GU810474

KL2

FC

72

GU810474

KL2

M

1

GU810474

KL2

M

3

GU810474

KL2

M

4

GU810474

KL2

M

5

GU810474

KL2

M

6

GU810474

KL2

M

7

GU810474

KL2

M

8

GU810474

KL2

M

9

GU810474

KL2

M

10

GU810474

KL2

M

11

GU810474

KL2

M

12

GU810474

KL2

M

15

GU810474

KL2

M

16

GU810474

KL2

M

17

GU810474

KL2

M

18

GU810474

KL2

M

19

GU810474

KL2

M

20

GU810474

KL2

M

23

GU810474

KL2

M

25

GU810474

KL2

M

28

GU810474

KL2

M

31

GU810474

KL2

M

33

GU810474

KL2

M

37

GU810474

KL2

M

45

GU810474

KL2

M

46

GU810474

KL2

M

47

GU810474

KL2

M

48

GU810474

KL2

M

49

GU810474

KL2

M

53

GU810474

KL2

M

55

GU810474

KL2

M

59

GU810474

KL2

M

60

GU810474

KL2

M

61

GU810474

KL2

M

63

GU810474

KL2

M

66

GU810474

KL2

M

67

GU810474

KL2

M

68

GU810474

KL2

M

72

GU810474

KL2

M

75

GU810474

KL2

M

76

GU810474

KL2

M

78

GU810474

KL2

M

80

GU810474

KL2

M

86

GU810474

KL2

M

88

GU810474

KL2

M

90

GU810474

KL2

M

91

GU810474

KL2

M

94

GU810474

KL2

M

97

GU810474

KL2

M

98

GU810474

KL2

M

100

GU810474

KL2

T

86

GU810474

KL2

T

42

GU810474

KL2

TC

43

GU810474

KL2

TC

21

GU810474

KL2

TC

23

GU810474

KL2

TC

24

GU810474

KL2

TC

75

GU810474

KL2.1

TC

7

HM031952

KL2.2

M

56

HM031953

KL2.2

M

54

HM031953

KL2.2

M

26

HM031953

KL2.3

TC

99

HM031954

KL2.3

M

39

HM031954

KL2.3

M

34

HM031954

KL2.3

M

21

HM031954

KL2.4

TC

22

HM031955

KL2.4

FC

30

HM031955

KL2.4

FC

43

HM031955

KL2.4

FC

48

HM031955

KL2.5

FC

6

HM031956

KL2.5

FC

9

HM031956

KL2.5

FC

15

HM031956

KL2.5

M

22

HM031956

KL2.5

TC

16

HM031956

KL2.6

FC

14

HM031957

KL3

T

4

GU810475

KL3

TC

8

GU810475

KL3

TC

38

GU810475

KL3

TC

41

GU810475

KL3

TC

42

GU810475

KL3.1

TC

12

HM031958

KL3.1

T

50

HM031958

KL3.2

TC

46

HM031959

KL4

TC

98

GU810476

KL4

T

76

GU810476

KL4

FC

52

GU810476

KL5

M

24

GU810477

KL5.1

TC

36

HM031959

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kennedy, P.G., Weber, M.G. & Bluhm, A.A. Frankia bacteria in Alnus rubra forests: genetic diversity and determinants of assemblage structure. Plant Soil 335, 479–492 (2010). https://doi.org/10.1007/s11104-010-0436-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-010-0436-9

Keywords

Navigation