Skip to main content
Log in

A wheat WRKY transcription factor TaWRKY17 enhances tolerance to salt stress in transgenic Arabidopsis and wheat plant

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

WRKY transcription factors are essential to plant growth, development, resistance, and the regulation of metabolic pathways. In this study, we characterized TaWRKY17, a WRKY transcription factor from wheat, which was differentially expressed in various wheat organs and was up-regulated by salt, drought, hydrogen peroxide (H2O2) and abscisic acid (ABA) treatment. To analyze TaWRKY17 function under salt stress, we obtained stable T3 generation transgenic Arabidopsis and wheat TaWRKY17 overexpression plants. TaWRKY17 overexpression in Arabidopsis and wheat caused a significant plant salt-stress tolerance enhancement. Under salt stress, superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) enzyme activities were elevated in transgenic Arabidopsis and wheat plants compared with the wild type (WT), whereas H2O2 and malondialdehyde (MDA) accumulation was reduced in the transgenic lines. Moreover, ABA/reactive oxygen species (ROS)-related, and stress-response genes were regulated in the transgenic wheat plants, increasing tolerance to salt stress. The transgenic wheat plants were highly sensitive to ABA during seed germination and early seedling growth. In addition, TaWRKY17 virus-induced gene silencing (VIGS) decreased salt tolerance. These results showed that TaWRKY17 enhances salt tolerance by regulating ABA/ROS-related, and stress-response genes and increasing anti-oxidative stress capabilities. Therefore, this gene could be a target for the genetic modification of wheat.

Key message

TaWRKY17 may act as a positive regulator in salt stress responses through either efficient ROS elimination, direct/indirect activation of the cellular antioxidant systems, or activation of stress-associated gene expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability

The datasets analysed during the current study are not publicly available but are available from the corresponding author.

References

  • Bao WQ, Wang XW, Chen M, Chai TY, Wang H (2018) A WRKY transcription factor, PcWRKY33, from Polygonum cuspidatum reduces salt tolerance in transgenic Arabidopsis thaliana. Plant Cell Rep 37:1033–1048

    Article  CAS  PubMed  Google Scholar 

  • Bates LS, Waldren RP, Teare ID (1973) Determination of proline for water-stress studies. Plant Soil 39:205–207

    Article  CAS  Google Scholar 

  • Bowler C, Montagu MV, Inze D (1992) Superoxide dismutase and stress tolerance. Annu Rev Plant Phys 43:83–116

    Article  CAS  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  CAS  PubMed  Google Scholar 

  • Ding LL, Zhang XH, Pang CY, Song MZ, Wei HL, Fan SL, Yu SX (2014) Genome-wide analysis of the WRKY gene family in cotton. Mol Genet Genomics 289:1103–1121

    Article  Google Scholar 

  • Ding LP, Wu Z, Teng RD, Xu SJ, Cao X, Yuan GZ, Zhang DH, Teng NJ (2021) LlWRKY39 is involved in thermotolerance by activiating LlMBF1c and interacting with LlCaM3 in lily (Lilium longiforum). Hortic Res 8:36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Draper HH, Squires EJ, Mahmoodi H, Wu J, Agarwal S, Hadley M (1993) A comparative evaluation of thiobarbituric acid methods for the determination of malondialdehyde in biological materials. Free Radic Biol Med 15:353–363

    Article  CAS  PubMed  Google Scholar 

  • Du C, Ma BJ, Wu ZG, Li NN, Zheng LL, Wang YC (2019) Reaumuria trigyna transcription factor RtWRKY23 enhances salt stress tolerance and delays flowering in plants. J Plant Physiol 239:38–51

    Article  CAS  PubMed  Google Scholar 

  • Eulgem T, Rushton PJ, Robatzek S, Somssich IE (2000) The WRKY superfamily of plant transcription factors. Trends Plant Sci 5:199–206

    Article  CAS  PubMed  Google Scholar 

  • Fang X, Li W, Yuan HT, Chen HW, Bo C, Ma Q, Cai RH (2021) Mutation of ZmWRKY86 confers enhanced salt stress tolerance in maize. Plant Physiol Bioch 167:840–850

    Article  CAS  Google Scholar 

  • Guo X, Wu CN, Wang DH, Wang GY, Jin K, Zhao YJ, Tian JC, Deng ZY (2022) Conditional QTL mapping for seed germination and seedling traits under salt stress and candidate gene prediction in wheat. Sci Rep 12:21010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo XR, Niu JF, Cao XY (2018) Heterologous expression of Salvia miltiorrhiza MicroRNA408 enhances tolerance to salt stress in Nicotiana benthamiana. Int J Mol Sci 19:3985

    Article  PubMed  PubMed Central  Google Scholar 

  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:89–198

    Google Scholar 

  • Hein I, Barciszewska-Pacak M, Hrubikova K, Williamson S, Dinesen M, Soenderby IE, Sundar S, Jarmolowski A, Shirasu K, Lacomme C (2005) Virus induced gene silencing-based functional characterization of genes associated with powdery mildew resistance in barley. Plant Physiol 138:2155–2164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang Z, Liu L, Jian LL, Xu WX, Wang JT, Li YX, Jiang CZ (2022) Heterologous expression of MfWRKY7 of resurrection plant Myrothamnus flabellifolia enhances salt and drought tolerance in Arabidopsis. Int J Mol Sci 21:4603

    Article  Google Scholar 

  • Jaffar MA, Song AP, Faheem M, Chen SM, Jiang JF, Liu C, Fan QQ, Chen FD (2016) Involvement of CmWRKY10 in drought tolerance of chrysanthemum through the ABA-Signaling pathway. Int J Mol Sci 17:693

    Article  PubMed  PubMed Central  Google Scholar 

  • Jiang Y, Duan Y, Jia Y, Ye S, Zhu J, Zhang F, Lu W, Fan D, Luo K (2015) Genome-wide identification and characterization of the WRKY transcription factor family and analysis of their expression in response to biotic and abiotic stresses. Genome 52:77–88

    Google Scholar 

  • Jogeswar G, Pallela R, Jakka N, Reddy P, Rao JV, Sreenivasulu N, Kishor PK (2006) Antioxidative response in different sorghum species under short-term salinity stress. Acta Physiol Plant 28:465–475

    Article  CAS  Google Scholar 

  • Li L, Mu SH, Cheng ZC, Cheng YW, Zhang Y, Miao Y, Hou CL, Li XP, Gao J (2017a) Characterization and expression analysis of the WRKY gene family in moso bamboo. Sci Rep 7:6675

    Article  PubMed  PubMed Central  Google Scholar 

  • Li M, Wang YQ, Ma FY, Zeng J, Chang JL, Chen MJ, Li KX, Yang GG, Wang YS, He GY (2017b) Effect of extra cysteine residue of new mutant 1Ax1 subunit on the functional properties of common wheat. Sci Rep 7:7510

    Article  PubMed  PubMed Central  Google Scholar 

  • Li Q, Qin YZ, Hu XX, Li GC, Ding HY, Xiong XG, Wang WX (2020) Transcriptome analysis uncovers the gene expression profile of salt-stressed potato (Solanum tuberosum L.). Sci Rep 10:5411

    Article  PubMed  PubMed Central  Google Scholar 

  • Lin LK, Yuan KL, Huang YD, Dong HZ, Qiao QH, Xing CH, Huang XS, Zhang SL (2022) A WRKY transcription factor PbWRKY40 from Pyrus betulaefolia functions positively in salt tolerance and modulating organic acid accumulation by regulating PbVHA-B1 expression. Environ Exp Bot 196:104782

    Article  CAS  Google Scholar 

  • Luo YL, Huang XX, Song XF, Wen BB, Xie NC, Wang KB, Huang JA, Liu ZH (2022) Identification of a WRKY transcriptional activator from Camellia sinensis that regulates methylated EGCG biosynthesis. Hortic Res 9:24

    Article  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410

    Article  CAS  PubMed  Google Scholar 

  • Mushtaq N, Wang Y, Fan JM, Li Y, Ding J (2022) Down-regulation of cytokinin receptor gene SlHK2 improves plant tolerance to drought, heat, and combined stresses in tomato. Plants (basel) 11:154

    Article  CAS  PubMed  Google Scholar 

  • Niu CF, Wei W, Zhou QY, Tian AG, Chen SY (2012) Wheat WRKY genes TaWRKY2 and TaWRKY19 regulate abiotic stress tolerance in transgenic Arabidopsis plants. Plant Cell Environ 35:1156–1170

    Article  CAS  PubMed  Google Scholar 

  • Liu XQ, Yang YM, Wang RY, Cui RF, Xu HQ, Sun CY, Wang JS, Zhang HY, Chen HT, Zhang D (2022) GmWRKY46, a WRKY transcription factor, negatively regulates phosphorus tolerance primarily through modifying root morphology in soybean. Plant Sci 315:111148

    Article  CAS  PubMed  Google Scholar 

  • Ning P, Liu C, Kang J, Lv J (2017) Genome-wide analysis of WRKY transcription factors in wheat (Triticum aestivum L.) and differential expression under water deficit condition. Peer J 5:e3232

    Article  PubMed  PubMed Central  Google Scholar 

  • Qin Y, Tian Y, Liu X (2015) A wheat salinity-induced WRKY transcription factor TaWRKY93 confers multiple abiotic stress tolerance in Arabidopsis thaliana. Biochem Biophys Res Commun 464:428–433

    Article  CAS  PubMed  Google Scholar 

  • Quan WL, Liu X, Wang LH, Yin MZ, Yang L, Chan ZL (2019) Ectopic expression of Medicago truncatula homeodomain finger protein, MtPHD6, enhances drought tolerance in Arabidopsis. BMC Genomics 20:982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramamoorthy R, Jiang SY, Kumar N, Venkatesh PN, Ramachandran S (2008) A comprehensive transcriptional profiling of the WRKY gene family in rice under various abiotic and phytohormone treatments. Plant Cell Physiol 49:865–879

    Article  CAS  PubMed  Google Scholar 

  • Sachdev S, Ansari SA, Ansari MI, Fujita M, Hasanuzzaman M (2021) Abiotic stress and reactive oxygen species: generation, signaling, and defense mechanisms. Antioxidants (basel) 10:277

    Article  CAS  PubMed  Google Scholar 

  • Sahebi M, Hanafi MM, Rafli MY, Mahmud TMM, Azizi P, Osman M, Abiri R, Taheri S, Kalhori N, Shabanimofrad M, Miah G, Atabaki N (2018) Improvement of drought tolerance in rice (Oryza sativa L.): genetics, genomic tools, and the WRKY gene family. Biomed Res Int 4:1–20

    Google Scholar 

  • Shi BW, Haq IU, Fiaz S, Alharthi B, Xu ML, Wang JL, Hou WH, Feng XB (2022) Genome-wide identification and expression analysis of the ZF-HD gene family in pea (Pisum sativum L.). Front Genet 13:1089375

    Article  CAS  PubMed  Google Scholar 

  • Shukla PS, Mantin EG, Adil M, Si B, Critchley AT, Prithiviraj B (2019) Ascophyllum nodosum-based biostimulants: sustainable applications in agriculture for the stimulation of plant growth, stress tolerance, and disease management. Front Plant Sci 10:655

    Article  PubMed  PubMed Central  Google Scholar 

  • Sparkers IA, Runions J, Kearns A, Hawes C (2006) Rapid, transient expression of fluorescent fusion proteins in tobacco plants and generation of stably transformed plants. Nat Protoc 1:2019–2025

    Article  Google Scholar 

  • Tian XJ, Wang ZY, Li XF, Lv TX, Liu HZ, Wang LZ, Niu HB, Bu QY (2015) Characterization and functional analysis of pyrabactin resistance-like abscisic acid receptor family in rice. Rice 8:28

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang C, Deng PY, Chen LL, Wang XT, Ma H, Hu W, Yao NC, Feng Y, Chai RH, Yang GX, He GY (2013) A wheat WRKY transcription factor TaWRKY10 confers tolerance to multiple abiotic stresses in transgenic tobacco. PLoS ONE 8:e65120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang XT, Zeng J, Li Y, Rong XL, Sun JT, Sun T, Li M, Wang LZ, Feng Y, Chai RH, Chen MJ, Chang JL, Li KX, Yang GX, He GY (2015) Expression of TaWRKY44, a wheat WRKY gene, in transgenic tobacco confers multiple abiotic stress tolerances. Front Plant Sci 6:615

    PubMed  PubMed Central  Google Scholar 

  • Wei KF, Chen J, Chen YF, Wu LJ, Xie DX (2012) Molecular phylogenetic and expression analysis of the complete WRKY transcription factor family in maize. DNA Res 19:153–164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu M, Liu HL, Han GM, Cai RH, Pan F, Xiang Y (2017) A moso bamboo WRKY gene PeWRKY83 confers salinity tolerance in transgenic Arabidopsis plants. Sci Rep 7:11721

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu TL, Zhong Y, Chen M, Wu B, Wang T, Jiang B, Zhong GY (2021) Analysis of CcGASA family members in Citrus clementina (Hort. ex Tan.) by a genome-wide approach. BMC Plant Biol 21:565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan H, Jia H, Chen X, Hao L, An H, Guo X (2014) The cotton WRKY transcription factor GhWRKY17 functions in drought and salt stress in transgenic Nicotiana benthamiana through ABA signaling and the modulation of reactive oxygen species production. Plant and Cell Physiol 55:2060–2076

    Article  CAS  Google Scholar 

  • Yang G, Zhang W, Liu Z, Yi-Maer A, Zhai M, Xu Z (2017) Both JrWRKY2 and JrWRKY7 of Juglans regia mediate responses to abiotic stresses and abscisic acid through formation of homodimers and interaction. Plant Biol 19:268–278

    Article  CAS  PubMed  Google Scholar 

  • Zhang SW, Xu BL, Gan YT (2019) Seed treatment with trichoderma longibrachiatum T6 promotes wheat seedling growth under NaCl stress through activating the enzymatic and nonenzymatic antioxidant defense systems. Int J Mol Sci 20:3729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng K, Jin CC, Wu LZ, Hou MY, Dou SJ, Pan YY (2014) Expression analysis of a stress-related phosphoinositide-specific phospholipase C gene in wheat (Triticum aestivum L.). PLoS ONE 9:e105061

    Article  Google Scholar 

Download references

Funding

This work was financially supported by the Henan Provincial Department of Science and Technology Research Project (No. 222102110461) and key scientific research projects of colleges and universities in Henan Province (23A210010).

Author information

Authors and Affiliations

Authors

Contributions

YY conceived and designed the experiments. YW conducted the experiments, collected and analysed. LH participated in data analysis. YY and YW wrote and revised the manuscript. All authors reviewed and approved the manuscript.

Corresponding author

Correspondence to Yongang Yu.

Ethics declarations

Competing interest

All authors declare that they have no conflicts of interest in relation to this work. On behalf of all authors, the corresponding author states that there is no conflict of interest in all aspects.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 953 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, Y., Wu, Y. & He, L. A wheat WRKY transcription factor TaWRKY17 enhances tolerance to salt stress in transgenic Arabidopsis and wheat plant. Plant Mol Biol 113, 171–191 (2023). https://doi.org/10.1007/s11103-023-01381-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-023-01381-1

Keywords

Navigation