Skip to main content
Log in

Ethylene response factor ERF022 is involved in regulating Arabidopsis root growth

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Ethylene response factors (ERFs) are involved in the regulation of plant development processes and stress responses. In this study, we provide evidence for the role of ERF022, a member of the ERF transcription factor group III, in regulating Arabidopsis root growth. We found that ERF022-loss-of-function mutants exhibited increased primary root length and lateral root numbers, and also morphological growth advantages compared to wild-type. Further studies showed that mutants had enhanced cell size in length in the root elongation zones. These results were accompanied by significant increase in the expression of cell elongation and cell wall expansion related genes SAUR10, GASA14, LRX2, XTH19 in mutants. Moreover, ERF022-mediated root growth was associated with the enhanced endogenous auxin and gibberellins levels. Our results suggest that loss-of-function of ERF022 up-regulated the expression of cell elongation and cell wall related genes through auxin and gibberellins signal in the regulation of root growth. Unexpectedly, ERF022 overexpression lines also showed longer primary roots and more lateral roots compared to wild-type, and had longer root apical meristematic zone with increased cell numbers. Overexpression of ERF022 significantly up-regulated cell proliferation, organ growth and auxin biosynthesis genes EXO, HB2, GALK2, LBD26, YUC5, which contribute to enhanced root growth. Altogether, our results provide genetic evidence that ERF022 plays an important role in regulating root growth in Arabidopsis thaliana.

Key message

Loss-of-function of ERF022 increases the expression of cell elongation and cell wall development related genes via auxin and gibberellins signal to promote root growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

Enquiries about data availability should be directed to the authors.

References

  • An JP, Zhang XW, Bi SQ, You CX, Wang XF, Hao YJ (2020) The ERF transcription factor MdERF38 promotes drought stress-induced anthocyanin biosynthesis in apple. Plant J 101:573–589

    Article  CAS  PubMed  Google Scholar 

  • Bak S, Feyereisen R (2001) The involvement of two P450 enzymes, CYP83B1 and CYP83A1, in auxin homeostasis and glucosinolate biosynthesis. Plant Physiol 127:108–118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bak S, Tax FE, Feldmann A, Galbraith WD, Feyereisen R (2001) CYP83B1, a cytochrome P450 at the metabolic branch point in auxin and indole glucosinolate biosynthesis in Arabidopsis. Plant Cell 13:101–111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bao SJ, Hua CM, Shen LS, Yu H (2020) New insights into gibberellin signaling in regulating flowering in Arabidopsis. J Integr Plant Biol 62:118–131

    Article  CAS  PubMed  Google Scholar 

  • Baumberger N, Steiner M, Ryser U, Keller B, Ringli C (2003) Synergistic interaction of the two paralogous Arabidopsis genes LRX1 and LRX2 in cell wall formation during root hair development. Plant J 35:71–81

    Article  CAS  PubMed  Google Scholar 

  • Beemster-Gerrit TS, Baskin TI (1998) Analysis of cell division and elongation underlying the developmental acceleration of root growth in Arabidopsis thaliana. Plant Physiol 116:1515–1526

    Article  Google Scholar 

  • Bemer M, Van MH, Muino JM, Ferrandiz C, Kaufmann K, Angenent GC (2017) FRUITFULL controls SAUR10 expression and regulates Arabidopsis growth and architecture. J Exp Bot 68:3391–3403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Binenbaum J, Weinstain R, Shani E (2018) Gibberellin localization and transport in plants. Trends Plant Sci 23:410–421

    Article  CAS  PubMed  Google Scholar 

  • Bolt S, Zuther E, Zintl S, Hincha DK, Schmülling T (2017) ERF105 is a transcription factor gene of Arabidopsis thaliana required for freezing tolerance and cold acclimation. Plant Cell Environ 40:108–120

    Article  CAS  PubMed  Google Scholar 

  • Cai XT, Xu P, Zhao PX, Liu R, Yu LH, Xiang CB (2014) Arabidopsis ERF109 mediates cross-talk between jasmonic acid and auxin biosynthesis during lateral root formation. Nat Commu 5:5833

    Article  CAS  Google Scholar 

  • Cai BB, Wang T, Sun H, Liu CM, Chu JF, Ren ZH (2022) Gibberellins regulate lateral root development that is associated with auxin and cell wall metabolisms in Cucumber. Plant Sci 317:110995

    Article  CAS  PubMed  Google Scholar 

  • Cavallari N, Artner C, Benková E (2021) Auxin-regulated lateral root organogenesis. CSH PERSPECT BIOL 13(7):a039941

    CAS  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  CAS  PubMed  Google Scholar 

  • Cosgrove DJ (2018) Diffuse growth of plant cell walls. Plant Physiol 176:16–27

    Article  CAS  PubMed  Google Scholar 

  • Darley CP, Forrester AM, Mcqueen SJ (2001) The molecular basis of plant cell wall extension. Plant Mol Biol 47:179–195

    Article  CAS  PubMed  Google Scholar 

  • Ding TT, Zhang F, Wang JX, Wang FX, Liu JJ, Xie CT (2021) Cell-type action specificity of auxin on Arabidopsis root growth. Plant J 106:928–941

    Article  CAS  PubMed  Google Scholar 

  • Farrar K, Evans MI, Topping JF, Souter MA, Nielsen JE, Lindsey K (2003) EXORDIUM - a gene expressed in proliferating cells and with a role in meristem function, identified by promoter trapping in Arabidopsis. Plant J 33:61–73

    Article  CAS  PubMed  Google Scholar 

  • Fenn MA, Giovannoni JJ (2021) Phytohormones in fruit development and maturation. Plant J 105:446–458

    Article  CAS  PubMed  Google Scholar 

  • Frigerio M, Alabadí D, Pérez-Gómez J, García-Cárcel L, Phillips AL, Hedden P, Blázquez MA (2006) Transcriptional regulation of gibberellin metabolism genes by auxin signaling in Arabidopsis. Plant Physiol 142:553–563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fu XD, Harberd NP (2003) Auxin promotes Arabidopsis root growth by modulating gibberellin response. Nat 421:13

    Google Scholar 

  • Gou J, Strauss SH, Tsai CJ, Fang K, Chen Y, Jiang X, Busov VB (2010) Gibberellins regulate lateral root formation in Populus through interactions with auxin and other hormones. Plant Cell 22:623–639

    Article  CAS  PubMed  Google Scholar 

  • Herzog M, Dorne AM, Grellet F (1995) GASA, a gibberellin regulated gene family from Arabidopsis thaliana related to the tomato GAST1 gene. Plant Mol Biol 27:743–752

    Article  CAS  PubMed  Google Scholar 

  • Hetherington FM, Kakkar M, Topping JF, Lindsey K (2021) Gibberellin signaling mediates lateral root inhibitionin response to K+-deprivation. Plant Physiol 185:1198–1215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu JH, Israeli A, Ori N, Sun TP (2018) The interaction between DELLA and ARF/IAA mediates crosstalk between gibberellin and auxin signaling to control fruit initiation in Tomato. Plant Cell 30:1710–1728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hull AK, Vij R, Celenza JL (2000) Arabidopsis cytochrome P450s that catalyze the first step of tryptophan-dependent indole-3-acetic acid biosynthesis. Proc Natl Acad Sci 97:2379–2384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jefferson AF (1987) Assaying chimeric genes in plants: the GUS gene fusion system. Plant Mol Biol 5:187–405

    Google Scholar 

  • Jiang L, Yang J, Liu CX, Chen ZP, Yao ZC, Cao SQ (2020) Overexpression of ethylene response factor ERF96 gene enhances selenium tolerance in Arabidopsis. Plant Physiol Biochem 149:294–300

    Article  CAS  PubMed  Google Scholar 

  • Kahn RA, Durst F (2000) Function and evolution of plant cytochromes P450. RAPT 34:151–190

    CAS  Google Scholar 

  • Kumari V, Bhalla TC (2015) Functional interpretation and structural insights of Arabidopsis lyrata cytochrome P450 CYP71A13 involved in auxin synthesis. Biomed Inform 11:330–335

    Google Scholar 

  • Lavenus J, Goh T, Roberts I, Guyomarc S, Lucas M, Smet ID (2013) Lateral root development in Arabidopsis: fifty shades of auxin. Trends Plant Sci 18:1360–1385

    Article  Google Scholar 

  • Lee WH, Cho C, Pandey SK, Park Y, Kim MJ, Kim J (2019) LBD16 and LBD18 acting downstream of ARF7 and ARF19 are involved in adventitious root formation in Arabidopsis. BMC Plant Biol 19:46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leyser O (2018) Auxin signaling. Plant Physiol 176:465–479

    Article  CAS  PubMed  Google Scholar 

  • Li SB, Xie ZZ, Hu CG, Zhang JZ (2016) A review of auxin response factors (ARFs) in plants. Front Plant Sci 7:1–7

    Google Scholar 

  • Li T, Yan A, Bhatia N, Altinok A, Afik E, Durand SP (2019) Calcium signals are necessary to establish auxin transporter polarity in a plant stem cell niche. Nat Commun 10:1–9

    Google Scholar 

  • Liu K, Li YH, Chen XN, Li LJ, Zhao HP, Wang YD (2018) ERF72 interacts with ARF6 and BZR1 to regulate hypocotyl elongation in Arabidopsis. J Exp Bot 69:3933–3947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lv BS, Wei KJ, Hu KQ, Tian T, Zhang F, Yu ZP et al (2021) MPK14-mediated auxin signaling controls lateral root development via ERF13 regulated very long chain fatty acid biosynthesis. Mol Plant 14:285–297

    Article  CAS  PubMed  Google Scholar 

  • Mao JL, Miao ZQ, Wang Z, Yu LH, Cai XT, Xiang CB (2016) Arabidopsis ERF1 mediates cross-talk between ethylene and auxin biosynthesis during primary root elongation by regulating ASA1 expression. PLoS Gene 12:e1005760

    Article  Google Scholar 

  • Marhava P, Bassukas AF, Zourelidou M, Kolb M, Moret B, Fastner A et al (2018) A molecular rheostat adjusts auxin flux to promote root protophloem differentiation. Nat 558:297

    Article  CAS  Google Scholar 

  • Mashiguchia K, Tanakaa K, Sakaic T, Sugawaraa S, Kawaide H, Natsume M et al (2011) The main auxin biosynthesis pathway in Arabidopsis. Proc Natl Acad Sci 8:18512–18517

    Article  Google Scholar 

  • Miao ZQ, Zhao PX, Mao JL, Yu LH, Yuan Y, Tang H (2018) Homeobox PROTEIN52 mediates the crosstalk between ethylene and auxin signaling during primary root elongation by modulating auxin transport related gene expression. Plant Cell 30:2761–2778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miransari M, Smithc DL (2014) Plant hormones and seed germination. Environ Exp Bot 99:110–121

    Article  CAS  Google Scholar 

  • Nakano T, Suzuki K, Fujimura T, Shinshi H (2006) Genome-wide analysis of the ERF gene family in Arabidopsis and Rice. Plant Physiol 140:411–432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nowak K, Wojcikowska B, Malgorzata GD (2015) ERF022 impacts the induction of somatic embryogenesis in Arabidopsis through the ethylene-related pathway. Planta 241:967–985

    Article  CAS  PubMed  Google Scholar 

  • O’Neill DP, Ross JJ (2002) Auxin regulation of the gibberellin pathway in pea. Plant Physiol 130:1974–1982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paponov IA, Paponov M, William T, Menges M, Chakrabortee S, Murray JA et al (2008) Comprehensive transcriptome analysis of auxin responses in Arabidopsis. Mol Plant 1:321–337

    Article  CAS  PubMed  Google Scholar 

  • Paquette SM, Bak S, Feyereisen R (2000) Intron-exon organization and phylogeny in a large superfamily, the paralogous cytochrome P450 genes of Arabidopsis thaliana. DNA Cell Biol 19:307–317

    Article  CAS  PubMed  Google Scholar 

  • Petricka JJ, Winter CM, Benfey PN (2012) Control of Arabidopsis root development. Annu Rev Plant Biol 63:563–590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Porco S, Larrieu A, Du YJ, Gaudinier A, Goh T, Swarup K (2016) Lateral root emergence in Arabidopsis is dependent on transcription factor LBD29 regulation of auxin influx carrier LAX3. COB 143:3340–3349

    CAS  Google Scholar 

  • Qiu T, Qi MY, Ding XH, Zheng YY, Zhou TJ, Chen Y, Han N, Zhu MY, Wang BHW, JH, (2020) The SAUR41 subfamily of SMALL AUXIN UP RNA genes is abscisic acid inducible to modulate cell expansion and salt tolerance in Arabidopsis thaliana seedlings. Ann Bot 125:805–819

    Article  CAS  PubMed  Google Scholar 

  • Roxrud I, Lid SE, Fletcher JC, Schmidt ED, Opsahl HG (2007) GASA4, one of the 14-member Arabidopsis GASA family of small polypeptides, regulates flowering and seed development. Plant Cell Physiol 48:471–483

    Article  CAS  PubMed  Google Scholar 

  • Ruan YL, Patrick JW, Bouzayen M, Osorio S, Fernie AR (2012) Molecular regulation of seed and fruit set. Trends Plant Sci 17:656–665

    Article  CAS  PubMed  Google Scholar 

  • Rui Y, Dinneny JR (2020) A wall with integrity: surveillance and maintenance of the plant cell wall under stress. New Phytol 225:1428–1439

    Article  PubMed  Google Scholar 

  • Sakuma Y, Liu Q, Dubouzet JG, Abe H, Shinozaki K, Yamaguchi SK (2002) DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration and cold-inducible gene expression. BBRS 290:998–1009

    CAS  Google Scholar 

  • Shukla V, Lombardi L, Iacopino S, Pencik A, Novak O, Perata P et al (2019) Endogenous hypoxia in lateral root primordia controls root architecture by antagonizing auxin signaling in Arabidopsis. Mol Plant 12:538–551

    Article  CAS  PubMed  Google Scholar 

  • Smetana O, Makila R, Lyu M, Amiryousefi A, Rodriguez FS, Wu MF et al (2019) High levels of auxin signalling define the stem-cell organizer of the vascular cambium. Nat 565:485–489

    Article  CAS  Google Scholar 

  • Sparkes IA, Runions J, Kearns A, Hawes C (2006) Rapid, transient expression of fluorescent fusion proteins in tobacco plants and generation of stably transformed plants. Nat Prot 1:2019–2025

    Article  CAS  Google Scholar 

  • Stortenbeker N, Bemer M (2019) The SAUR gene family: the plant’s toolbox for adaptation of growth and development. J Exp Bot 70:17–27

    Article  CAS  PubMed  Google Scholar 

  • Sun SL, Wang HX, Yu HM, Zhong CM, Zhang XX, Peng JZ et al (2013a) GASA14 regulates leaf expansion and abiotic stress resistance by modulating reactive oxygen species accumulation. J Exp Bot 64:1637–1647

    Article  CAS  PubMed  Google Scholar 

  • Sun XD, Feng ZH, Meng LS, Zhu J, Geitmann A (2013b) Arabidopsis ASL11/LBD15 is involved in shoot apical meristem development and regulates WUS expression. Planta 237:1367–1378

    Article  CAS  PubMed  Google Scholar 

  • Sun N, Wang JJ, Gao ZX, Dong J, He H, Terzaghic W et al (2016) Arabidopsis SAURs are critical for differential light regulation of the development of various organs. Proc Natl Acad Sci 113:6071–6076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swarup R, Perry P, Hagenbeek D, Van DS, Gerrit TS, Sandberg G et al (2007) Ethylene upregulates auxin biosynthesis in Arabidopsis seedlings to enhance inhibition of root cell elongation. Plant Cell 19:2186–2196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van MH, Van DA, Stortenbeker N, Angenent GC, Bemer M (2017) Divergent regulation of Arabidopsis SAUR genes: a focus on the SAUR10-clade. BMC Plant Biol 17:245

    Article  Google Scholar 

  • Vanstraelen M, Benkova E (2012) Hormonal interactions in the regulation of plant development. Annu Rev Cell Dev Biol 28:463–487

    Article  CAS  PubMed  Google Scholar 

  • Wang GL, An YH, Wang YH, Liu JX, Wang JZ, Sun M, Xiong AS (2020) Gibberellin-induced alterations to the expression of cell wall-related genes in the xylem of carrot root. J Plant Growth Regul 40:787–797

    Article  Google Scholar 

  • Wang YZ, Chen WY, Ou Y, Zhu YY, Li J (2022) Arabidopsis root elongation receptor kinases negatively regulate root growth putatively via altering cell wall remodeling gene expression. J Integr Plant Biol 64:1502–1513

    Article  CAS  PubMed  Google Scholar 

  • Weaver JE (1926) Root development of field crops. McGraw-Hill, New York, pp 1–291

    Google Scholar 

  • Weiss D, Ori N (2007) Mechanisms of cross talk between gibberellinand other hormones. Plant Physiol 144:1240–1246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wolf S, Hematy K, Hofte H (2012) Growth control and cell wall signaling in plants. Annu Rev Plant Biol 63:381–407

    Article  CAS  PubMed  Google Scholar 

  • Xu P, Zhao P, Cai X, Mao J, Miao Z, Xiang C (2020) Integration of jasmonic acid and ethylene into auxin signaling in root development. Front Plant Sci 11:271

    Article  PubMed  PubMed Central  Google Scholar 

  • Yao ZC, Hao WT, Wang YJ, Chen ZP, Cao SQ, Jiang L (2022) Loss-of-function mutations in the ERF96 gene enhance iron-deficient tolerance in Arabidopsis. Plant Physiol Biochem 175:1–11

    Article  CAS  PubMed  Google Scholar 

  • Yokoyama R, Nishitani K (2001) A comprehensive expression analysis of all members of a gene family encoding cell-wall enzymes allowed us to predict cis-regulatory regions involved in cell-wall construction in specific organs of Arabidopsis. Plant Cell Physiol 42:1025–1033

    Article  CAS  PubMed  Google Scholar 

  • Yu ZP, Zhang F, Friml J, Ding ZJ (2022) Auxin signaling: research advances over the past 30 years. J Int Plant Biol 64:371–392

    Article  CAS  Google Scholar 

  • Zemlyanskaya EV, Omelyanchuk NA, Ubogoeva EV, Mironova VV (2018) Deciphering auxin ethylene cross talk at a systems level. Int J Mol Sci 19:4060

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao Q, Yu DS, Chang HP, Guo XH, Yuan CY, Hu S et al (2013) Regulation and function of Arabidopsis AtGALK2 gene in abscisic acid response signaling. Mol Biol Rep 40:6605–6612

    Article  CAS  Google Scholar 

  • Zhao H, Yin CC, Ma B, Chen SY, Zhang JS (2021) Ethylene signaling in rice and Arabidopsis: new regulators and mechanisms. J Int Plant Biol 63:102–125

    Article  CAS  Google Scholar 

  • Zhou W, Lozano JL, Blilou I, Zhang X, Zhai Q, Smant G et al (2019) A jasmonate signaling network activates root stem cells and promotes regeneration. Cell 177:942e.14-956e.14

    Article  Google Scholar 

  • Zhou Y, Ma B, Tao JJ, Yin CC, Hu Y, Huang YH et al (2022) Rice EIL1 interacts with OsIAAs to regulate auxin biosynthesis mediated by the tryptophan aminotransferase MHZ10/OsTAR2 during root ethylene responses. Plant Cell 34:4366–4387

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou YM, Pang ZQ, Jia HF, Yuan ZN, Ming R (2023) Responses of roots and rhizosphere of female papaya to the exogenous application of GA3. BMC Plant Biol 23:35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (32070276).

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

LJ designed the research and wrote the manuscript. RL and JY performed all experiments. ZY and SC analyzed the data. All authors contributed to the discussion and revision.

Corresponding author

Correspondence to Li Jiang.

Ethics declarations

Conflict of interest

The authors have not disclosed any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

11103_2023_1373_MOESM1_ESM.docx

Supplementary file1 Table S1 Primer sequences used in the present study. Fig. S1 The root hair phenotypes of WT, mutant and overexpression plants. Fig. S2 The compare of leaf sizes among WT, mutant and overexpression lines. Fig. S3 Growth of ERF022-loss-of-function mutants in soilfilled pots. Fig. S4 Growth of ERF022 overexpression plants in soilfilled pots. Fig. S5 Volcano Plot of DEGs in groups WT vs erf022 (A) and WT vs 22OE (B). Fig. S6 Germination of the WT, mutant and overexpression lines. (DOCX 1535 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, L., Li, R., Yang, J. et al. Ethylene response factor ERF022 is involved in regulating Arabidopsis root growth. Plant Mol Biol 113, 1–17 (2023). https://doi.org/10.1007/s11103-023-01373-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-023-01373-1

Keywords

Navigation