Skip to main content

Advertisement

Log in

i6mA-Fuse: improved and robust prediction of DNA 6 mA sites in the Rosaceae genome by fusing multiple feature representation

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

DNA N6-methyladenine (6 mA) is one of the most vital epigenetic modifications and involved in controlling the various gene expression levels. With the avalanche of DNA sequences generated in numerous databases, the accurate identification of 6 mA plays an essential role for understanding molecular mechanisms. Because the experimental approaches are time-consuming and costly, it is desirable to develop a computation model for rapidly and accurately identifying 6 mA. To the best of our knowledge, we first proposed a computational model named i6mA-Fuse to predict 6 mA sites from the Rosaceae genomes, especially in Rosa chinensis and Fragaria vesca. We implemented the five encoding schemes, i.e., mononucleotide binary, dinucleotide binary, k-space spectral nucleotide, k-mer, and electron–ion interaction pseudo potential compositions, to build the five, single-encoding random forest (RF) models. The i6mA-Fuse uses a linear regression model to combine the predicted probability scores of the five, single encoding-based RF models. The resultant species-specific i6mA-Fuse achieved remarkably high performances with AUCs of 0.982 and 0.978 and with MCCs of 0.869 and 0.858 on the independent datasets of Rosa chinensis and Fragaria vesca, respectively. In the F. vesca-specific i6mA-Fuse, the MBE and EIIP contributed to 75% and 25% of the total prediction; in the R. chinensis-specific i6mA-Fuse, Kmer, MBE, and EIIP contribute to 15%, 65%, and 20% of the total prediction. To assist high-throughput prediction for DNA 6 mA identification, the i6mA-Fuse is publicly accessible at https://kurata14.bio.kyutech.ac.jp/i6mA-Fuse/.

Key message

The existing prediction models are not suitable to identify 6mA in the Rosaceae genome because the existing algorithms are species-specific. Thus, a novel predictor is desired to be established to identify 6mA sites in the Rosaceae genome. To the best of our knowledge, we first propose a computation model named i6mA-Fuse (Identification of N6-MethylAdenine sites by Fusing multiple feature representation) to predict 6mA sites from the Rosaceae genomes, especially in Rosa chinensis and Fragaria vesca.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

Download references

Acknowledgements

This work is supported by the Grant-in-Aid for JSPS Research Fellow (19F19377) from Japan Society for the Promotion of Science (JSPS), partially supported from Japan Society for the Promotion of Science by Grant-in-Aid for Scientific Research (B) (19H04208) and by the developing key technologies for discovering and manufacturing pharmaceuticals used for next-generation treatments and diagnoses both from the Ministry of Economy, Trade and Industry, Japan (METI) and from Japan Agency for Medical Research and Development (AMED).

Author information

Authors and Affiliations

Authors

Contributions

MMH and HK conceived the project. MMH and KMS collected and analyzed the datasets. MMH drafted the manuscript. HK, MMH, MB, SW and KMS thoroughly revised the manuscript. All authors approved and read the final manuscript.

Corresponding author

Correspondence to Hiroyuki Kurata.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 164 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hasan, M.M., Manavalan, B., Shoombuatong, W. et al. i6mA-Fuse: improved and robust prediction of DNA 6 mA sites in the Rosaceae genome by fusing multiple feature representation. Plant Mol Biol 103, 225–234 (2020). https://doi.org/10.1007/s11103-020-00988-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-020-00988-y

Keywords

Navigation