Alshammaa DAS (2017) Phytochemical investigation and quantitative comparison of Ergosterol between Agaricus bisporus and Pleurotus ostreatus by HPLC and GC-MS methods. Int J Pharm Sci Rev Res 44(2):215–220
CAS
Google Scholar
Anandhi R, Annadurai T, Anitha TS et al (2013) Antihypercholesterolemic and antioxidative effects of an extract of the oyster mushroom, Pleurotus ostreatus, and its major constituent, chrysin, in Triton WR-1339-induced hypercholesterolemic rats. J Physiol Biochem 69:313–323. https://doi.org/10.1007/s13105-012-0215-6
CAS
Article
PubMed
Google Scholar
Antunes F, Marçal S, Taofiq O et al (2020) Valorization of mushroom by-products as a source of value-added compounds and potential applications. Molecules 25:2672. https://doi.org/10.3390/molecules25112672
CAS
Article
PubMed Central
Google Scholar
Aprea E, Romano A, Betta E et al (2015) Volatile compound changes during shelf life of dried Boletus edulis: comparison between SPME-GC-MS and PTR-ToF-MS analysis. J Mass Spectrom 50:56–64. https://doi.org/10.1002/jms.3469
CAS
Article
PubMed
Google Scholar
Arbaayah HH, Umi KY (2013) Antioxidant properties in the oyster mushrooms (Pleurotus spp.) and split gill mushroom (Schizophyllum commune) ethanolic extracts. Mycosphere 4:661–673
Article
Google Scholar
Atila F, Owaid MN, Shariati MA (2017) The nutritional and medical benefits of Agaricus bisporus: a review. J Microbiol Biotech Food Sci 7(3):281–286. https://doi.org/10.15414/jmbfs.2017/18.7.3.281-286
CAS
Article
Google Scholar
Ayaz FA, Torun H, Özel A et al (2011) Nutritional value of some wild edible mushrooms from the Black Sea region (Turkey). Turk J Biochem 36(4):385–393
Google Scholar
Barros LL, Cruz T, Baptista P et al (2008) Wild and commercial mushrooms as source of nutrients and nutraceuticals. Food Chem Toxicol 46:2742–2747. https://doi.org/10.1016/j.fct.2008.04.030
CAS
Article
PubMed
Google Scholar
Barros L, Barreira J, Grangeia C et al (2011) Beef burger patties incorporated with Boletus edulis extracts: lipid peroxidation inhibition effects. Eur J Lipid Sci Technol 113(6):737–743. https://doi.org/10.1002/ejlt.201000478
CAS
Article
Google Scholar
Beara IN, Lesjak MM, Četojević-Simin DD et al (2014) Phenolic profile, antioxidant, anti-inflammatory and cytotoxic activities of black (Tuber aestivum Vittad.) and white (Tuber magnatum Pico) truffles. Food Chem 165:460–466. https://doi.org/10.1016/j.foodchem.2014.05.116
CAS
Article
PubMed
Google Scholar
Bederska-Łojewska D, Świątkiewicz S, Muszyńska B (2017) The use of Basidiomycota mushrooms in poultry nutrition—a review. Anim Feed Sci Technol 230:59–69. https://doi.org/10.1016/j.anifeedsci.2017.06.001
CAS
Article
Google Scholar
Bellesia F, Pinetti A, Bianchi A et al (1988) The volatile organic compounds of black truffle (Tuber melanosporum Vitt.) from middle Italy. Flavour Frag J 13:56–58. https://doi.org/10.1002/(sici)1099-1026(199801/02)13:1%3c56::aid-ffj692%3e3.0.co;2-x
Article
Google Scholar
Bellesia F, Pinetti A, Tirillini B et al (2001) Temperature-dependent evolution of volatile organic compounds in Tuber borchii from Italy. Flavour Frag J 16:1–6. https://doi.org/10.1002/1099-1026(200101/02)16:1%3c1::aid-ffj936%3e3.0.co;2-y
CAS
Article
Google Scholar
Biscaia SMP, Carbonero ER, Bellan DL et al (2017) Safe therapeutics of murine melanoma model using a novel antineoplasic, the partially methylated mannogalactan from Pleurotus eryngii. Carbohydr Polym 178:95–104. https://doi.org/10.1016/j.carbpol.2017.08.117
CAS
Article
PubMed
Google Scholar
Bobovčák M, Kuniaková R, Gabriž J et al (2010) Effect of Pleuran (β-glucan from Pleurotus ostreatus) supplementation on cellular immune response after intensive exercise in elite athletes. Appl Physiol Nutr Metab 35(6):755–762. https://doi.org/10.1139/h10-070
Article
PubMed
Google Scholar
Bonanno A, Di Grigoli A, Vitale F et al (2019) Effects of diets supplemented with medicinal mushroom myceliated grains on some production, health, and oxidation traits of dairy ewes. Int J Med Mushrooms 21(1):89–103. https://doi.org/10.1615/IntJMedMushrooms.2018029327
Article
PubMed
Google Scholar
Bose S, Mandal SK, Hossain P et al (2019) Phytochemical and pharmacological potentials of Agaricus bisporus. Res J Pharm Technol 12(8):3811–3817. https://doi.org/10.5958/0974-360x.2019.00653.x
Article
Google Scholar
Bovi M, Cenci L, Perduca M et al (2013) BEL β-trefoil: a novel lectin with antineoplastic properties in King bolete (Boletus edulis) mushrooms. Glycobiology 23(5):578–592. https://doi.org/10.1093/glycob/cws164
CAS
Article
PubMed
Google Scholar
Bulam S, Üstün NS, Pekşen A (2019) Evaluation of nutritional and medicinal values of edible wild and cultivated Pleurotus ostreatus. Turk J Agric Food Sci Technol 7(12):2054–2061. https://doi.org/10.24925/turjaf.v7i12.2054-2061.2730
Article
Google Scholar
Butkhup L, Samappito W, Jorjong S (2018) Evaluation of bioactivities and phenolic contents of wild edible mushrooms from northeastern Thailand. Food Sci Biotechnol 27(1):193–202. https://doi.org/10.1007/s10068-017-0237-5
CAS
Article
PubMed
Google Scholar
Çağlarirmak N (2011) Edible mushrooms: an alternative food item. In: Savoie JM, Foulongne-Oriol M, Largeteau M, Barroso G (eds) ICMBMP 2011. Proceedings of the 7th international conference on mushroom biology and mushroom products; October 4–7; Arcachon, France, pp 548–554
Carrasco-González JA, Serna-Saldívar SO, Gutíerrez-Uribe JA (2017) Nutritional composition and nutraceutical properties of the Pleurotus fruiting bodies: potential use as food ingredient. J Food Compost Anal 58:69–81. https://doi.org/10.1016/j.jfca.2017.01.016
CAS
Article
Google Scholar
Cateni F, Zacchigna M, Caruso Bavisotto C et al (2018) Structural characterization of polysaccharides of a productive strain of the culinary-medicinal king oyster mushroom, Pleurotus eryngii (Agaricomycetes), from Italy. Int J Med Mushrooms 20(8):717–726. https://doi.org/10.1615/intjmedmushrooms.2018027011
Article
PubMed
Google Scholar
Cateni F, Zacchigna M, Procida G et al (2020) Polysaccharides from Pleurotus eryngii var. elaeoselini (Agaricomycetes), a new potential culinary-medicinal oyster mushroom from Italy. Int J Med Mushrooms 22(5):431–444. https://doi.org/10.1615/intjmedmushrooms.2020034539
Article
PubMed
Google Scholar
Cayan F, Deveci E, Tel-Cayan G et al (2018) Phenolic acid profile of six wild mushroom species by HPLC-DAD. Chem Nat Compd 54(5):985–986. https://doi.org/10.1007/s10600-018-2529-2
CAS
Article
Google Scholar
Cerigini E, Palma F, Barbieri E et al (2008) The Tuber borchii fruiting body-specific protein TBF-1, a novel lectin which interacts with associated Rhizobium species. FEMS Microbiol Lett 284:197–203. https://doi.org/10.1111/j.1574-6968.2008.01197.x
CAS
Article
PubMed
Google Scholar
Chaturvedi VK, Agarwal S, Gupta KK et al (2018) Medicinal mushroom: boon for therapeutic applications. 3 Biotech 8(8):334. https://doi.org/10.1007/s13205-018-1358-0
Article
PubMed
PubMed Central
Google Scholar
Chen SY, Ho KJ, Hsieh YJ et al (2012) Contents of lovastatin, γ-aminobutyric acid and ergothioneine in mushroom fruiting bodies and mycelia. LWT Food Sci Technol 47:274–278. https://doi.org/10.1177/1934578x1100600207
CAS
Article
Google Scholar
Chen HP, Zhao ZZ, Li ZH et al (2018) Anti-proliferative and anti-inflammatory lanostane triterpenoids from the polish edible mushroom Macrolepiota procera. J Agric Food Chem 66:3146–3154. https://doi.org/10.1021/acs.jafc.8b00287.s002
CAS
Article
PubMed
Google Scholar
Cheung PCK (2013) Mini-review on edible mushrooms as source of dietary fiber: preparation and health benefits. Food Sci Hum Wellness 2:162–166. https://doi.org/10.1016/j.fshw.2013.08.001
Article
Google Scholar
Citores L, Ragucci S, Ferreras JM et al (2019) Ageritin, a ribotoxin from popular mushroom (Agrocybe aegerita) with defensive and antiproliferative activities. ACS Chem Biol 14(6):1319–1327. https://doi.org/10.1021/acschembio.9b00291.s001
CAS
Article
PubMed
Google Scholar
Corrêa RCG, Brugnari T, Bracht A et al (2016) Biotechnological, nutritional and therapeutic uses of Pleurotus spp. (Oyster mushroom) related with its chemical composition: a review on the past decade findings. Trends Food Sci Tech 50(4):103–117. https://doi.org/10.1016/j.tifs.2016.01.012
CAS
Article
Google Scholar
Costa R, Tedone L, De Grazia S et al (2013) Multiple headspace-solid-phase microextraction: an application to quantification of mushroom volatiles. Anal Chim Acta 770:1–6. https://doi.org/10.1016/j.aca.2013.01.041
CAS
Article
PubMed
Google Scholar
Costa R, De Grazia S, Grasso E et al (2015) Headspace-solid-phase microextraction-gas chromatography as analytical methodology for the determination of volatiles in wild mushrooms and evaluation of modifications occurring during storage. J Anal Methods Chem 2015:Article ID 951748, 10 pp. https://doi.org/10.1155/2015/951748
D’Auria M, Rana GL, Racioppi R et al (2012) Studies on volatile organic compounds of Tuber borchii and Tuber asa-foetida. J Chromatogr Sci 50:775–778. https://doi.org/10.1093/chromsci/bms060
CAS
Article
PubMed
Google Scholar
De Felice S (1989) The nutraceutical revolution: fueling a powerful. New International Market
Dewick PM (2009) Medicinal natural products: a biosynthetic approach, 3rd edn. Wiley, Chichester. https://doi.org/10.1021/jm901204h
Book
Google Scholar
Ding Z, Lu Y, Lu Z et al (2010) Hypoglycaemic effect of comatin, an antidiabetic substance separated from Coprinus comatus broth, on alloxan-induced-diabetic rats. Food Chem 121:39–43. https://doi.org/10.1016/j.foodchem.2009.12.001
CAS
Article
Google Scholar
Ding X, Hou Y, Hou W et al (2015) Structure elucidation and anti-tumor activities of water-soluble oligosaccharides from Lactarius deliciosus (L. ex Fr.) Gray. Pharmacogn Mag 11(44):716–723. https://doi.org/10.4103/0973-1296.165559
CAS
Article
PubMed
PubMed Central
Google Scholar
Diyabalanage T, Mulabagal V, Mills G et al (2008) Health-beneficial qualities of the edible mushroom, Agrocybe aegerita. Food Chem 108:97–102. https://doi.org/10.1016/j.foodchem.2007.10.049
CAS
Article
Google Scholar
Dulay RMR, Sanguesa KB, Ablaza JLT et al (2015) Bioactive myco-nutrients of aseptically cultured fruiting bodies of Coprinus comatus (O.F. Müll.) Pers. on rice bran-enriched ruminants’ dung. IJBPAS 4(4):1896–1908
CAS
Google Scholar
Ergönül PG, Ergönül B, Kalyoncu F et al (2012) Fatty acid compositions of five wild edible mushroom species collected from Turkey. Int J Pharmacol 8(5):463–466. https://doi.org/10.3923/ijp.2012.463.466
CAS
Article
Google Scholar
Erjavec J, Kos J, Ravnikar M et al (2012) Proteins of higher fungi—from forest to application. Trends Biotechnol 30:259–273. https://doi.org/10.1016/j.tibtech.2012.01.004
CAS
Article
PubMed
Google Scholar
Feeney MJ, Miller AM, Roupas P (2014) Mushrooms—biologically distinct and nutritionally unique. Nutr Today 49:301–307. https://doi.org/10.1097/nt.0000000000000063
Article
PubMed Central
Google Scholar
Feng T, Li ZH, Dong ZJ et al (2011) Non-isoprenoid botryane sesquiterpenoids from basidiomycete Boletus edulis and their cytotoxic activity. Nat Prod Bioprospect 1:29–32. https://doi.org/10.1007/s13659-011-0005-9
CAS
Article
PubMed Central
Google Scholar
Fernandes A, Barros L, Barreira JCM et al (2013) Effects of different processing technologies on chemical and antioxidant parameters of Macrolepiota procera wild mushroom. LWT Food Sci Technol 54:493–499. https://doi.org/10.1016/j.lwt.2013.06.027
CAS
Article
Google Scholar
Fernandes A, Barreira JCM, Antonio AL et al (2015) Exquisite wild mushrooms as a source of dietary fiber: analysis in electron-beam irradiated samples. LWT -Food Sci Technol 60:855–859. https://doi.org/10.1016/j.lwt.2014.10.050
CAS
Article
Google Scholar
Ferreira ICFR, Barros LL, Abreu RMV (2009) Antioxidants in wild mushrooms. Curr Med Chem 16:1543–1560. https://doi.org/10.2174/092986709787909587
CAS
Article
PubMed
Google Scholar
Fleming A (1929) On the antibacterial action of cultures of a Penicillium, with special reference to their use in the isolation of B. influenzae. Br J Exp Pathol 10:226–236. https://doi.org/10.1093/clinids/2.1.129
CAS
Article
PubMed Central
Google Scholar
Fogarasi M, Socaci SA, Dulf FV et al (2018) Bioactive compounds and Volatile Profiles of Five Transylvanian Wild Edible Mushrooms. Molecules 23:3272–3286. https://doi.org/10.3390/molecules23123272
CAS
Article
PubMed Central
Google Scholar
Fontana S, Flugy A, Schillaci O et al (2014) In vitro antitumor effects of the cold-water extracts of Mediterranean species of genus Pleurotus (Higher Basidiomycetes) on human colon cancer cells. Int J Med Mushrooms 16(1):49–63. https://doi.org/10.1615/intjmedmushr.v16.i1.50
Article
PubMed
Google Scholar
Fu Z, Liu Y, Zhang Q (2016) A potent pharmacological mushroom: Pleurotus eryngii. Fungal Genom Biol 6(1):1000139. https://doi.org/10.4172/2165-8056.1000139
CAS
Article
Google Scholar
Gaglio R, Guarcello R, Venturella G et al (2019) Microbiological, chemical and sensory aspects of bread supplemented with different percentages of the culinary mushroom Pleurotus eryngii in powder form. Int J Food Sci Technol 54:1197–1205. https://doi.org/10.1111/ijfs.13997
CAS
Article
Google Scholar
Gallotti F, Lavelli R (2020) The effect of UV irradiation on vitamin D2 content and antioxidant and antiglycation activities of mushrooms. Foods 9:1087. https://doi.org/10.3390/foods9081087
CAS
Article
PubMed Central
Google Scholar
Gargano ML, van Griensven LJL, Isikhuemhen OS et al (2017) Medicinal mushrooms: valuable biological resources of high exploitation potential. Plant Biosyst 151(3):548–565. https://doi.org/10.1080/11263504.2017.1301590
Article
Google Scholar
Gasecka M, Mleczek M, Siwulski M et al (2016) Phenolic and flavonoid content in Hericium Erinaceus, Ganoderma Lucidum and Agrocybe aegerita under selenium addition. Acta Aliment 45(2):300–308. https://doi.org/10.1556/066.2016.45.2.18
CAS
Article
Google Scholar
Giavasis I (2014) Bioactive fungal polysaccharides as potential functional ingredients in food and nutraceuticals. Curr Opin Biotechnol 26:162–173. https://doi.org/10.1016/j.copbio.2014.01.010
CAS
Article
PubMed
Google Scholar
Gil-Ramirez A, Pavo-Caballero C, Baeza E et al (2016) Mushrooms do not contain flavonoids. J Funct Foods 25:1–13. https://doi.org/10.1016/j.jff.2016.05.005
CAS
Article
Google Scholar
Golak-Siwulska I, Kalużewicz A, Spiżewski T et al (2018) Bioactive compounds and medicinal properties of Oyster mushrooms (Pleurotus sp.). Folia Hort 30(2):191–201. https://doi.org/10.2478/fhort-2018-0012
Article
Google Scholar
Grangeia C, Heleno SA, Barros LL et al (2011) Effects of trophism on nutritional and nutraceutical potential of wild edible mushrooms. Food Res Int 44:1029–1035. https://doi.org/10.1016/j.foodres.2011.03.006
CAS
Article
Google Scholar
Grothe T, Stadler M, Koepcke B et al (2013) Terpenoids spiro ketal compounds with lxr agonists activity, theiruse and formulation with them. U.S. Pat. Appl. Publ. US 20130338219 A1 20131219
Gründemann C, Reinhardt JK, Lindequist U (2020) European medicinal mushrooms: do they have potential for modern medicine? An update. Phytomedicine 66:153131. https://doi.org/10.1016/j.phymed.2019.153131
CAS
Article
PubMed
Google Scholar
Harki E, Bouya D, Dargent R (2005) Maturation-associated alterations of the biochemical characteristics of the black truffle Tuber melanosporum Vitt. Food Chem 99:394–400
Article
Google Scholar
Hasnat MA, Pervin M, Debnath T et al (2014) DNA protection, total phenolics and antioxidant potential of the mushroom Russula virescens. J Food Biochem 38:6–17. https://doi.org/10.1111/jfbc.12019
CAS
Article
Google Scholar
He P, Li F, Huang L et al (2016) Chemical characterization and antioxidant activity of polysaccharide extract from spent mushroom substrate of Pleurotus eryngii. J Taiwan Inst Chem Eng 69:48–53. https://doi.org/10.1016/j.jtice.2016.10.017
CAS
Article
Google Scholar
Heleno SA, Barros LL, Sousa MJ et al (2011) Targeted metabolites analysis in wild Boletus species. LWT Food Sci Technol 2011(44):1343–1348. https://doi.org/10.1016/j.lwt.2011.01.017
CAS
Article
Google Scholar
Heleno SA, Ferreira RC, Antonio AL et al (2015) Nutritional value, bioactive compounds and antioxidant properties of three edible mushrooms from Poland. Food Biosci 11:48–55. https://doi.org/10.1016/j.fbio.2015.04.006
CAS
Article
Google Scholar
Helrich K (1990) Association of Official Analytical Chemists, Official methods of analysis. 15 edn. Arlington, VA
Hess J, Wang Q, Gould T et al (2018) Impact of Agaricus bisporus mushroom consumption on gut health markers in healthy adults. Nutrients 10:1402. https://doi.org/10.3390/nu10101402
CAS
Article
PubMed Central
Google Scholar
Hou Y, Liu L, Ding X et al (2016) Structure elucidation, proliferation effect on macrophage and its mechanism of a new heteropolysaccharide from Lactarius deliciosus Gray. Carbohydr Polym 152:648–657. https://doi.org/10.1016/j.carbpol.2016.07.064
CAS
Article
PubMed
Google Scholar
Hou Y, Wang M, Zhao D et al (2019) Effect on macrophage proliferation of a novel polysaccharide from Lactarius deliciosus (L. ex Fr.) Gray. Oncol Lett 17(2):2507–2515. https://doi.org/10.3892/ol.2018.9879
CAS
Article
PubMed
Google Scholar
Hu Q, Du H, Ma G et al (2018) Purification, identification and functional characterization of an immunomodulatory protein from Pleurotus eryngii. Food Funct 9(7):3764–3775. https://doi.org/10.1039/c8fo00604k
CAS
Article
PubMed
Google Scholar
Islam T, Ganesan K, Xu B (2019) New insight into mycochemical profiles and antioxidant potential of edible and medicinal mushrooms: a review. Int J Med Mushrooms 21(3):237–251. https://doi.org/10.1615/intjmedmushrooms.2019030079
Article
PubMed
Google Scholar
Ismaya WT, Tjandrawinata RR, Rachmawati H (2020) Lectins from the edible mushroom Agaricus bisporus and their therapeutic potentials. Molecules 25:2368. https://doi.org/10.3390/molecules25102368
CAS
Article
Google Scholar
Itonori S, Aoki K, Sugita M (2004) Glycosphingolipids in edible fungi and their biological activities. Foods Food Ingredients J Jpn 209(3):211–218
CAS
Google Scholar
Jaworska G, Pogoń K, Skrzypczak A (2015) Composition and antioxidant properties of wild mushrooms Boletus edulis and Xerocomus badius prepared for consumption. J Food Sci Technol 52(12):7944–7953. https://doi.org/10.1007/s13197-015-1933-x
CAS
Article
PubMed
PubMed Central
Google Scholar
Jeon SM, Bok SH, Jang MK et al (2001) Antioxidative activity of naringin and lovastatin in high cholesterol-fed rabbits. Life Sci 69(24):2855–2866. https://doi.org/10.1016/s0024-3205(01)01363-7
CAS
Article
PubMed
Google Scholar
Jiang X, Teng S, Wang X et al (2018) The antidiabetic and antinephritic activities of Tuber melanosporum via modulation of Nrf2-mediated oxidative stress in the db/db mouse. Oxid Med Cell Longev 2018:7453865. https://doi.org/10.1155/2018/7453865
CAS
Article
PubMed
PubMed Central
Google Scholar
Jing N, Shi J, Li G et al (2012) Determination of fatty acids from mushrooms using high performance liquid chromatography with fluorescence detection and online mass spectrometry. Food Res Int 48:155–163. https://doi.org/10.1016/j.foodres.2012.02.014
CAS
Article
Google Scholar
Jing H, Li J, Zhang J et al (2018) The antioxidative and anti-aging effects of acidic- and alkali-extractable mycelium polysaccharides by Agrocybe aegerita (Brig.) Sing. Int J Biol Macromol 106:1270–1278. https://doi.org/10.1016/j.ijbiomac.2017.08.138
CAS
Article
PubMed
Google Scholar
Kakon AJ, Choudhury MBK, Shusmita S (2012) Mushroom is an ideal food supplement. J Dhaka Natl Med Coll Hos 18:58–62. https://doi.org/10.3329/jdnmch.v18i1.12243
Article
Google Scholar
Kalač P (2009) Chemical composition and nutritional value of European species of wild growing mushrooms: a review. Food Chem 113:9–16. https://doi.org/10.1016/j.foodchem.2008.07.077
CAS
Article
Google Scholar
Kalač P (2012) A review of chemical composition and nutritional value of wild-growing and cultivated mushrooms. J Sci Food Agric 93:209–218. https://doi.org/10.1016/j.foodchem.2008.07.077
CAS
Article
PubMed
Google Scholar
Kalaras MD, Richie JP, Calcagnotto A (2017) Mushrooms: a rich source of the antioxidants ergothioneine and glutathione. Food Chem 233:429–433. https://doi.org/10.1016/j.foodchem.2017.04.109
CAS
Article
PubMed
Google Scholar
Kalogeropoulos N, Yanni AE, Koutrotsios G et al (2013) Bioactive microconstituents and antioxidant properties of wild edible mushrooms from the island of Lesvos, Greece. Food Chem Toxicol 55:378–385. https://doi.org/10.1016/j.fct.2013.01.010
CAS
Article
PubMed
Google Scholar
Khatun S, Islam A, Cakicioglu U (2015) Nutritional qualities and antioxidant activity of three edible oyster mushrooms (Pleurotus spp.). NJAS-Wagen J Life Sc 72–73:1–5. https://doi.org/10.1016/j.njas.2012.03.003
Article
Google Scholar
Khaund P, Joshi SR (2014) Enzymatic profiling of wild edible mushrooms consumed by the ethnic tribes of India. J Korean Soc Appl Biol Chem 57(2):263–271. https://doi.org/10.1007/s13765-013-4225-z
CAS
Article
Google Scholar
Khider M, Seoudi O, Abdelaliem YF (2017) Functional processed cheese spreads with high nutritional value as supplemented with fresh and dried mushrooms. Int J Food Sci Nutr 6(1):2327–2716. https://doi.org/10.11648/j.ijnfs.20170601.18
CAS
Article
Google Scholar
Kikuchi T, Motoyashiki N, Yamada T et al (2017) Ergostane-type sterols from King Trumpet Mushroom (Pleurotus eryngii) and their inhibitory effects on Aromatase. Int J Mol Sci 18:2479–2489. https://doi.org/10.3390/ijms18112479
CAS
Article
PubMed Central
Google Scholar
Kikuchi T, Kitaura K, Katsumoto A et al (2018) Three bisabolane-type sesquiterpenes from edible mushroom Pleurotus eryngii. Fitoterapia 129:108–113. https://doi.org/10.1016/j.fitote.2018.06.021
CAS
Article
PubMed
Google Scholar
Kikuchi T, Isobe M, Uno S et al (2019) Strophasterols E and F: rearranged ergostane-type sterols from Pleurotus eryngii. Bioorg Chem 89:103011. https://doi.org/10.1016/j.bioorg.2019.103011
CAS
Article
PubMed
Google Scholar
Kim YJ, Jung IK, Kwak EJ (2010) Quality characteristics and antioxidant activities of cookies added with Pleurotus eryngii powder. Korean J Food Sci Technol 42(2):183–189
Google Scholar
Kim SH, Lee J, Heo Y et al (2016) Effect of Pleurotus eryngii mushroom β-glucan on quality characteristics of common wheat pasta. J Food Sci 81(4):C835–C840
CAS
Article
Google Scholar
Kivrak I, Kivrak S, Harmandar M (2014) Free amino acid profiling in the giant puffball mushroom (Calvatia gigantea) using UPLC–MS/MS. Food Chem 158:88–92. https://doi.org/10.1016/j.foodchem.2014.02.108
CAS
Article
PubMed
Google Scholar
Kosanić M, Ranković B, Rančić A et al (2016) Evaluation of metal concentration and antioxidant, antimicrobial, and anticancer potentials of two edible mushrooms Lactarius deliciosus and Macrolepiota procera. J Food Drug Anal 24:477–484. https://doi.org/10.1016/j.jfda.2016.01.008
CAS
Article
PubMed
Google Scholar
Koutrotsios G, Kalogeropoulos N, Stathopoulos P et al (2017) Bioactive compounds and antioxidant activity exhibit high intraspecific variability in Pleurotus ostreatus mushrooms and correlate well with cultivation performance parameters. World J Microbiol Biotechnol 33:98. https://doi.org/10.1007/s11274-017-2262-1
CAS
Article
PubMed
Google Scholar
Kozarski MS, Klaus AS, Niksic MP et al (2014) Polysaccharides of higher fungi: biological role, structure and antioxidative activity. Chem Ind 68:305–320. https://doi.org/10.2298/hemind121114056k
Article
Google Scholar
Kumar K (2015) Role of edible mushrooms as functional foods—a review. South Asian J Food Technol Environ 1(3–4):211–218
Article
Google Scholar
Kumar K, Barmanray A (2007) Nutritional evaluation and storage studies of button mushroom powder fortified biscuits. Mushroom Res 16(1):31–35
Google Scholar
Kumar S, Pandey AK (2013) Chemistry and biological activities of flavonoids: an overview. Sci World J, Article ID 162750. https://doi.org/https://doi.org/10.1155/2013/162750
Kurt A, Gençcelep H (2018) Enrichment of meat emulsion with mushroom (Agaricus bisporus) powder: impact on rheological and structural characteristics. J Food Eng 237:128–136. https://doi.org/10.1016/j.jfoodeng.2018.05.028
CAS
Article
Google Scholar
La Guardia M, Venturella G, Venturella F (2005) On the chemical composition and nutritional value of Pleurotus taxa growing on umbelliferous plants (Apiaceae). J Agric Food Chem 53:5997–6002. https://doi.org/10.1021/jf0307696
CAS
Article
PubMed
Google Scholar
Landi N, Pacifico S, Ragucci S et al (2017a) Pioppino mushroom in southern Italy: an undervalued source of nutrients and bioactive compounds. J Sci Food Agric 97:5388–5397. https://doi.org/10.1002/jsfa.8428
CAS
Article
PubMed
Google Scholar
Landi N, Pacifico S, Ragucci S et al (2017b) Purification, characterization and cytotoxicity assessment of Ageritin: the first ribotoxin from the basidiomycete mushroom Agrocybe aegerita. Biochim Biophys Acta 1861:1113–1121. https://doi.org/10.1016/j.bbagen.2017.02.023
CAS
Article
Google Scholar
Lavelli V, Proserpio C, Gallotti F et al (2018) Circular reuse of bio-resources: the role of Pleurotus spp. in the development of functional foods. Food Funct 9:1353–1372. https://doi.org/10.1039/c7fo01747b
CAS
Article
PubMed
Google Scholar
Leal AR, Barros LL, Barreira JCM et al (2013) Portuguese wild mushrooms at the “pharma–nutrition” interface: Nutritional characterization and antioxidant properties. Food Res Int 50:1–9. https://doi.org/10.1016/j.foodres.2012.10.012
CAS
Article
Google Scholar
Lee SR, Lee D, Lee HJ et al (2017) Renoprotective chemical constituents from an edible mushroom, Pleurotus cornucopiae in cisplatin-induced nephrotoxicity. Bioorg Chem 71:67–73. https://doi.org/10.1016/j.bioorg.2017.01.012
CAS
Article
PubMed
Google Scholar
Lee H, Nam K, Zahra Z, Farooqui MQU (2020) Potentials of truffles in nutritional and medicinal applications: a review. Fungal Biol Biotechnol 7:9. https://doi.org/10.1186/s40694-020-00097-x
Article
PubMed
PubMed Central
Google Scholar
Li S, Shah NP (2016) Characterization, antioxidative and bifidogenic effects of polysaccharides from Pleurotus eryngii after heat treatments. Food Chem 197:240–249. https://doi.org/10.1016/j.foodchem.2015.10.113
CAS
Article
PubMed
Google Scholar
Li B, Lu F, Suo X et al (2010) Antioxidant properties of cap and stipe from Coprinus comatus. Molecules 15:1473–1486. https://doi.org/10.3390/molecules15031473
CAS
Article
PubMed
PubMed Central
Google Scholar
Li HJ, Chen HY, Fan LL et al (2015) In vitro antioxidant activities and in vivo anti-hypoxic activity of the edible mushroom Agaricus bisporus (Lange) Sing. Chaidam Mol 20:17775–17788. https://doi.org/10.3390/molecules201017775
CAS
Article
Google Scholar
Li X, Zhang X, Ye L et al (2019) LC-MS-Based Metabolomic approach revealed the significantly different metabolic profiles of five commercial truffle species. Front Microbiol 10:2227. https://doi.org/10.3389/fmicb.2019.02227
Article
PubMed
PubMed Central
Google Scholar
Li H, Wang X, Xiong Q et al (2020) Sulfated modification, characterization, and potential bioactivities of polysaccharide from the fruiting bodies of Russula virescens. Int J Biol Macromol 154:1438–1447. https://doi.org/10.1016/j.ijbiomac.2019.11.025
CAS
Article
PubMed
Google Scholar
Liang Y, Chen Y, Liu H et al (2011) The tumor rejection effect of protein components from medicinal fungus. Biomed Prev Nutr 1:245–254. https://doi.org/10.1016/j.bionut.2011.06.006
Article
Google Scholar
Lin S, Ching LT, Lam K et al (2017) Anti-angiogenic effect of water extract from the fruiting body of Agrocybe aegerita. LWT Food Sci Technol 75:155–163. https://doi.org/10.1016/j.lwt.2016.08.044
CAS
Article
Google Scholar
Liping S, Xuejiao S, Yongliang Z (2016) Preparation, characterization and antiglycation activities of the novel polysaccharides from Boletus sinicus. Int J Biol Macromol 92:607–614. https://doi.org/10.1016/j.ijbiomac.2016.07.014
CAS
Article
PubMed
Google Scholar
Liu Y, Zhao Y, Yang Y et al (2013) Structural characteristics and hypoglycemic activity of polysaccharides from Coprinus comatus. Bioact Carbohydr Dietary Fibre 2:164–169. https://doi.org/10.1016/j.bcdf.2013.10.001
CAS
Article
Google Scholar
Liu W, Yu G, Yu W et al (2017) Autophagy inhibits apoptosis induced by Agrocybe aegerita lectin in hepatocellular carcinoma. Anti-Cancer Agent ME 17(2):221–229. https://doi.org/10.2174/1871520616666160404112645
CAS
Article
Google Scholar
Liu G, Ye J, Li W et al (2020a) Extraction, structural characterization, and immunobiological activity of ABP Ia polysaccharide from Agaricus bisporus. Int J Biol Macromol 162:975–984. https://doi.org/10.1016/j.ijbiomac.2020.06.204
CAS
Article
PubMed
Google Scholar
Liu X, Zhang Z, Xu L et al (2020b) Dioscorea saponin transforms the structure of truffle exo-polysaccharide and enhances its antioxidant activity. LWT Food Sci Technol 127:109417. https://doi.org/10.1016/j.lwt.2020.109417
CAS
Article
Google Scholar
Liu X, Liu D, Chen Y et al (2020c) Physicochemical characterization of a polysaccharide from Agrocybe aegirita and its anti-ageing activity. Carbohydr Polym 236:116056. https://doi.org/10.1016/j.carbpol.2020.116056
CAS
Article
PubMed
Google Scholar
Lu X, Brennan MA, Serventi L et al (2016) How the inclusion of mushroom powder can affect the physicochemical characteristics of pasta. Int J Food Sci Technol 51:2433–2439. https://doi.org/10.1111/ijfs.13246
CAS
Article
Google Scholar
Lu X, Brennan MA, Serventi L et al (2018) Addition of mushroom powder to pasta enhances the antioxidant content and modulates the predictive glycaemic response of pasta. Food Chem 264:199–209. https://doi.org/10.1016/j.foodchem.2018.04.130
CAS
Article
PubMed
Google Scholar
Lu X, Brennan MA, Narciso J et al (2020) Correlations between the phenolic and fibre composition of mushrooms and the glycaemic and textural characteristics of mushroom enriched extruded products. LWT Food Sci Technol 118:108730. https://doi.org/10.1016/j.lwt.2019.108730
CAS
Article
Google Scholar
Luo A, Luo A, Huang J et al (2012) Purification, characterization and antioxidant activities in vitro and in vivo of the polysaccharides from Boletus edulis Bull. Molecules 17:8079–8090. https://doi.org/10.3390/molecules17078079
CAS
Article
PubMed
PubMed Central
Google Scholar
Ma G, Yang W, Zhao L et al (2018) A critical review on the health promoting effects of mushrooms nutraceuticals. Food Sci Hum Well 7:125–133. https://doi.org/10.1016/j.fshw.2018.05.002
Article
Google Scholar
Manach C, Scalbert A, Morand C et al (2004) Polyphenols: Food sources and bioavailability. Am J Clin Nutr 79:727–747. https://doi.org/10.1093/ajcn/79.5.727
CAS
Article
PubMed
Google Scholar
Matei E, Louis JM, Jee JG et al (2011) NMR solution structure of a cyanovirin homolog from wheat head blight fungus. Proteins 79:1538–1549. https://doi.org/10.1002/prot.22981
CAS
Article
PubMed
PubMed Central
Google Scholar
Minato K, Ohara A, Mizuno M (2017) A proinflammatory effect of the β-glucan from Pleurotus cornucopiae mushroom on macrophage action. Mediat Inflamm 17:8402405/1-8402405/9. https://doi.org/10.1155/2017/8402405
CAS
Article
Google Scholar
Mitsou EK, Saxami G, Stamoulou E et al (2020) Effects of rich in B-glucans edible mushrooms on aging gut microbiota characteristics: an in vitro study. Molecules 25:2806. https://doi.org/10.3390/molecules25122806
CAS
Article
PubMed Central
Google Scholar
Motoshima RA, da Rosa T, F, da C Mendes L, et al (2018) Inhibition of Leishmania amazonensis arginase by fucogalactan isolated from Agrocybe aegerita mushroom. Carbohydr Polym 201:532–538. https://doi.org/10.1016/j.carbpol.2018.08.109
CAS
Article
PubMed
Google Scholar
Nagy M, Socaci S, Tofanã M et al (2017) Chemical composition and bioactive compounds of some wild edible mushrooms. Bull UASVM Food Sci Technol 74(1):1. https://doi.org/10.15835/buasvmcn-fst:12629
CAS
Article
Google Scholar
Nowacka N, Nowak R, Drozd M et al (2014) Analysis of phenolic constituents, antiradical and antimicrobial activity of edible mushrooms growing wild in Poland. LWT Food Sci Technol 59:689–694. https://doi.org/10.1016/j.lwt.2014.05.041
CAS
Article
Google Scholar
Nowak R, Nowacka-Jechalke N, Juda M et al (2018) The preliminary study of prebiotic potential of Polish wild mushroom polysaccharides: the stimulation effect on Lactobacillus strains growth. Eur J Nutr 57:1511–1521. https://doi.org/10.1007/s00394-017-1436-9
CAS
Article
PubMed
Google Scholar
Nowakowski P, Naliwajko SK, Markiewicz-Zukowska R et al (2020) The two faces of Coprinus comatus—functional properties and potential hazards. Phytother Res. https://doi.org/10.1002/ptr.6741
Article
PubMed
PubMed Central
Google Scholar
Nuhu A, Nam YK, Gyun SP et al (2011) Antioxidant, phenolic compounds concentration, xanthine oxidase and tyrosinase inhibitory activities of Pleurotus cornucopiae. Aust J Basic Appl Sci 5(3):229–239
Google Scholar
Oguri S (2020) Pleurotus cornucopiae mycelial lectin (PCL-M): purification and detection of the activity on mycelial surface. Methods Mol Biol 2132:445–2452. https://doi.org/10.1007/978-1-0716-0430-4_43
CAS
Article
PubMed
Google Scholar
Oloke JK, Adebayo EA (2015) Effectiveness of immunotherapies from oyster mushroom (Pleurotus species) in the management of immunocompromised patients. Int J Immunol 3(2–1):8–20. https://doi.org/10.11648/j.iji.s.2015030201.12
CAS
Article
Google Scholar
Öztürk M, Duru ME, Kivrak S et al (2011) In vitro antioxidant, anticholinesterase and antimicrobial activity studies on three Agaricus species with fatty acid compositions and iron contents: a comparative study on the three most edible mushrooms. Food Chem Toxicol 49:1353–1360. https://doi.org/10.1016/j.fct.2011.03.019
CAS
Article
PubMed
Google Scholar
Palacios I, Lozano M, Moro C et al (2011) Antioxidant properties of phenolic compounds occurring in edible mushrooms. Food Chem 128:674–678. https://doi.org/10.1016/j.foodchem.2011.03.085
CAS
Article
Google Scholar
Palazzolo E, Gargano ML, Venturella G (2012) The nutritional composition of selected wild edible mushrooms from Sicily (southern Italy). Int J Food Sci Nutr 63(1):79–83. https://doi.org/10.3109/09637486.2011.598850
CAS
Article
PubMed
Google Scholar
Papoutsis K, Grasso S, Menon A et al (2020) Recovery of ergosterol and vitamin D2 from mushroom waste—Potential valorization by food and pharmaceutical industries. Trends Food Sci Technol 99:351–366. https://doi.org/10.1016/j.tifs.2020.03.005
CAS
Article
Google Scholar
Parmar R, Kumar D (2015) Study of chemical composition in wild edible mushroom Pleurotus cornucopiae (Paulet) from Himachal Pradesh, India by using Fourier transforms infrared spectrometry (FTIR), Gas chromatography-mass spectrometry (GCMS) and X-ray fluorescence (XRF). Biol Forum 7(2):1057–1066
CAS
Google Scholar
Patel Y, Naraian R, Singh VK (2012) Medicinal properties of Pleurotus species (Oyster mushroom): a review. World J Fungal Plant Biol 3(1):1–12
CAS
Google Scholar
Patel S, Rauf A, Khan H et al (2017) Potential health benefits of natural products derived from truffles: a review. Trends Food Sci Technol 70:1–8. https://doi.org/10.1016/j.tifs.2017.09.009
CAS
Article
Google Scholar
Peintner U, Schwarz S, Mesic A et al (2013) Mycophilic or mycophobic? Legislation and guidelines on wild mushroom commerce reveal different consumption behaviour in European countries. PLoS ONE 8(15):e63926. https://doi.org/10.1371/journal.pone.0063926
Article
PubMed
PubMed Central
Google Scholar
Pelaes Vital AC, Goto PA, Hanai LN et al (2015) Microbiological, functional and rheological properties of low fat yogurt supplemented with Pleurotus ostreatus aqueous extract. LWT Food Sci Technol 64:1028–1035. https://doi.org/10.1016/j.lwt.2015.07.003
CAS
Article
Google Scholar
Petrović J, Glamočlija J, Stojković D et al (2015) Nutritional value, chemical composition, antioxidant activity and enrichment of cream cheese with chestnut mushroom Agrocybe aegerita (Brig.) Sing. J Food Sci Technol 52(10):6711–6718. https://doi.org/10.1007/s13197-015-1783-6
CAS
Article
PubMed
PubMed Central
Google Scholar
Pietrzak-Fiećko R, Galgowska M, Bakula S (2016) Fatty acid composition in wild Boletus edulis from Poland. Ital J Food Sci 28(3):402–411. https://doi.org/10.14674/1120-1770/ijfs.v42
Article
Google Scholar
Pirillo A, Capatano AL (2014) Nutraceuticals: definitions, European regulations and clinical applications (Nutraceutica: definizione, regolamentazione e applicazioni). Giorn Ital Farmacoecon Farmacoutiliz 6(4):23–30
Google Scholar
Pizzoferrato L, Manzi P, Bertocchi F et al (2000) Solid state 13C CP MAS NMR spectroscopy of mushrooms gives directly the ratio between proteins and polysaccharides. J Agric Food Chem 48:5484–5488. https://doi.org/10.1021/jf000448j
CAS
Article
PubMed
Google Scholar
Poniedziałek B, Siwulski M, Wiater A et al (2019) The effect of mushroom extracts on human platelet and blood coagulation: in vitro screening of eight edible species. Nutrients 11:3040. https://doi.org/10.3390/nu11123040
CAS
Article
PubMed Central
Google Scholar
Popović M, Vukmirović S, Stilinović N et al (2010) Anti-oxidative activity of an aqueous suspension of commercialpreparation of the mushroom Coprinus comatus. Molecules 15:4564–4571. https://doi.org/10.3390/molecules15074564
CAS
Article
PubMed
PubMed Central
Google Scholar
Proserpio C, Lavelli V, Laureati M et al (2019) Effect of Pleurotus ostreatus powder addition in vegetable soup on ß-glucan content, sensory perception, and acceptability. Food Sci Nutr 7:730–737. https://doi.org/10.1002/fsn3.917
CAS
Article
PubMed
PubMed Central
Google Scholar
Punelli F, Reverberi M, Porretta D et al (2009) Molecular characterization and enzymatic activity of laccases in two Pleurotus spp. with different pathogenic behaviour. Mycol Res 113:381–387. https://doi.org/10.1016/j.mycres.2008.11.018
CAS
Article
PubMed
Google Scholar
Rathore H, Prasad S, Sharma S (2017) Mushroom nutraceuticals for improved nutrition and better human health: a review. PharmaNutrition 5:35–46. https://doi.org/10.1016/j.phanu.2017.02.001
Article
Google Scholar
Reis FS, Martins A, Barros LL et al (2012) Antioxidant properties and phenolic profile of the most widely appreciated cultivated mushrooms: a comparative study between in vivo and in vitro samples. Food Chem Toxicol 50:1201–1207. https://doi.org/10.1016/j.fct.2012.02.013
CAS
Article
PubMed
Google Scholar
Reis FS, Martins A, Vasconcelos MH et al (2017) Functional foods based on extracts or compounds derived from mushrooms. Trends Food Sci Technol 66:48–62. https://doi.org/10.1016/j.tifs.2017.05.010
CAS
Article
Google Scholar
Ren XM, Li DF, Jiang S et al (2015) Structural basis of specific recognition of non-reducing terminal N-acetylglucosamine by an Agrocybe aegerita lectin. PLoS ONE 10(6):e0129608/1-e0129608/15. https://doi.org/10.2210/pdb4tqk/pdb
CAS
Article
Google Scholar
Reverberi M, Di Mario F, Tomati U (2004) β-Glucan synthase induction in mushrooms grown on olive mill wastewaters. Appl Microbiol Biotechnol 66:217–225. https://doi.org/10.1007/s00253-004-1662-y
CAS
Article
PubMed
Google Scholar
Rodrigues DMF, Freitas AC, Rocha-Santos TAP et al (2015) Chemical composition and nutritive value of Pleurotus citrinopileatus var cornucopiae, P. eryngii, P. salmoneo stramineus, Pholiota nameko and Hericium erinaceus. J Food Sci Technol 52(11):6927–6939. https://doi.org/10.1007/s13197-015-1826-z
CAS
Article
Google Scholar
Ruggiero A, García-Ortega L, Ragucci S et al (2018) Structural and enzymatic properties of Ageritin, a novel metal-dependent ribotoxin-like protein with antitumor activity. BBA-Gen Subj 1862:2888–2894. https://doi.org/10.1016/j.bbagen.2018.09.010
CAS
Article
Google Scholar
Ruthes AC, Smiderle FR, Iacomini M (2015) D-Glucans from edible mushrooms: a review on the extraction, purification and chemical characterization approaches. Carbohydr Polym 117:753–761. https://doi.org/10.1016/j.carbpol.2014.10.051
CAS
Article
PubMed
Google Scholar
Salehi F (2019) Characterization of different mushrooms powder and its application in bakery products: a review. Int J Food Prop 22(1):1375–1385. https://doi.org/10.1080/10942912.2019.1650765
CAS
Article
Google Scholar
Sande D, de Oliveira GP, Fidelis de Moura MA et al (2019) Edible mushrooms as a ubiquitous source of essential fatty acids. Food Res Int 125:108524. https://doi.org/10.1016/j.foodres.2019.108524
CAS
Article
PubMed
Google Scholar
Sarma D, Saha AK, Datta BK (2018) Bioactive compounds with special references to anticancer property of oyster mushroom Pleurotus ostreatus. J Pharmacogn Phytochem 7(4):2694–2698
CAS
Google Scholar
Schillaci D, Arizza V, Gargano ML, Venturella G (2013) Antibacterial activity of Mediterranean Oyster mushrooms, species of genus Pleurotus (Higher Basidiomycetes). Int J Med Mushrooms 15(6):591–594. https://doi.org/10.1615/IntJMedMushr.v15.i6.70
Article
PubMed
Google Scholar
Selvamani S, El-Enshasy HA, Dailin DJ et al (2018) Antioxidant compounds of the edible mushroom Pleurotus ostreatus. Int J Biotechnol Wellness Ind 7:1–14. https://doi.org/10.6000/1927-3037.2018.07.01
CAS
Article
Google Scholar
Singla R, Ghosh M, Ganguli A (2009) Phenolics and antioxidant activity of a ready-to-eat snack food prepared from the edible mushroom (Agaricus bisporus). Nutr Food Sci 39(3):227–234. https://doi.org/10.1108/00346650910957474
Article
Google Scholar
Smiderle FR, Ruthes AC, van Arkel J (2011) Polysaccharides from Agaricus bisporus and Agaricus brasiliensis show similarities in their structures and their immunomodulatory effects on human monocytic THP-1 cells. BMC Complem Altern Med 11:58. https://doi.org/10.1186/1472-6882-11-58
Article
Google Scholar
Souilem F, Fernandes Â, Calhelha RC et al (2017) Wild mushrooms and their mycelia as sources of bioactive compounds: Antioxidant, anti-inflammatory and cytotoxic properties. Food Chem 230:40–48. https://doi.org/10.1016/j.foodchem.2017.03.026
CAS
Article
PubMed
Google Scholar
Srikram A, Supapvanich S (2016) Proximate compositions and bioactive compounds of edible wild and cultivated mushrooms from Northeast Thailand. Agric Nat Resour 50:432–436. https://doi.org/10.1016/j.anres.2016.08.001
Article
Google Scholar
Stojković D, Reis FS, Glamoclija JM et al (2014) Cultivated strains of Agaricus bisporus and A. brasiliensis: chemical characterization and evaluation of antioxidant and antimicrobial properties for the final healthy product—natural preservatives in yoghurt. Food Funct 5(7):1602–1612. https://doi.org/10.1039/c4fo00054d
CAS
Article
PubMed
Google Scholar
Stojković D, Reis FS, Ciric A et al (2015) Boletus aereus growing wild in Serbia: chemical profile, in vitro biological activities, inactivation and growth control of food-poisoning bacteria in meat. Int J Food Sci Technol 52(11):7385–7392. https://doi.org/10.1007/s13197-015-1853-9
CAS
Article
Google Scholar
Su S, Ding X, Fu L et al (2019) Structural characterization and immune regulation of a novel polysaccharide from Maerkang Lactarius deliciosus Gray. Int J Mol Med 44(2):713–724. https://doi.org/10.3892/ijmm.2019.4219
CAS
Article
PubMed
Google Scholar
Sun YX, Liu JC, Yang XD et al (2010a) Purification, structural analysis and hydroxyl radical-scavenging capacity of a polysaccharide from the fruiting bodies of Russula virescens. Process Biochem 45:874–879. https://doi.org/10.1016/j.procbio.2010.02.007
CAS
Article
Google Scholar
Sun Z, Zhang L, Zhang B et al (2010b) Structural characterisation and antioxidant properties of polysaccharides from the fruiting bodies of Russula virescens. Food Chem 118:675–680. https://doi.org/10.1016/j.foodchem.2009.05.036
CAS
Article
Google Scholar
Surup F, Hennicke F, Sella N (2019) New terpenoids from the fermentation broth of the edible mushroom Cyclocybe aegerita. Beilstein J Org Chem 15:1000–1007. https://doi.org/10.3762/bjoc.15.98
CAS
Article
PubMed
PubMed Central
Google Scholar
Tala MF, Qin J, Ndongo JT et al (2017) New azulene-type sesquiterpenoids from the fruiting bodies of Lactarius deliciosus. Nat Prod Bioprospect 7:269–273. https://doi.org/10.1007/s13659-017-0130-1
CAS
Article
Google Scholar
Talkad MS, Das RK, Bhattacharjee P et al (2015) Establishment of enzyme inhibitory activities of lovastatin, isolated from Pleurotus ostreatus. Int J Appl Sci Biotechnol 3(3):408–416. https://doi.org/10.3126/ijasbt.v3i3.12932
CAS
Article
Google Scholar
Taofiq O, González-Paramás AM, Martins A et al (2016) Mushrooms extracts and compounds in cosmetics, cosmeceuticals and nutricosmetics —a review. Ind Crop Prod 90:38–48. https://doi.org/10.1016/j.indcrop.2016.06.012
CAS
Article
Google Scholar
Tejedor-Calvo E, Morales D, Marco P et al (2020) Screening of bioactive compounds in truffles and evaluation of pressurized liquid extractions (PLE) to obtain fractions with biological activities. Food Res Int 132:109054. https://doi.org/10.1016/j.foodres.2020.109054
CAS
Article
PubMed
Google Scholar
Tsai YS, Huang SJ, Mau JL (2006) Antioxidant properties of hot water extracts from Agrocybe cylindracea. Food Chem 98:670–677. https://doi.org/10.1016/j.foodchem.2005.07.003
CAS
Article
Google Scholar
Tsai SY, Tsai HL, Mau JL (2007) Nutritional value, chemical composition, antioxidant activity and enrichment of cream cheese with chestnut mushroom Agrocybe aegerita (Brig.) Sing. (Agaricomycetideae). Int J Med Mushrooms 9:47–55. https://doi.org/10.1007/s13197-015-1783-6
CAS
Article
Google Scholar
Tsai SY, Huang SJ, Lo SH et al (2009) Flavour components and antioxidant properties of several cultivated mushrooms. Food Chem 113:578–584. https://doi.org/10.1016/j.foodchem.2008.08.034
CAS
Article
Google Scholar
Valverde ME, Hernández-Pérez T, Paredes-López O (2015) Edible Mushrooms: improving human health and promoting quality life. Int J Microbiol Article ID 376387:14 pp. https://doi.org/10.1155/2015/376387
Vanamu E (2012) In vitro antimicrobial and antioxidant activities of ethanolic extract of lyophilized mycelium of Pleurotus ostreatus PQMZ91109. Molecules 17:3653–3671. https://doi.org/10.3390/molecules17043653
CAS
Article
Google Scholar
Venturella G, Palazzolo E, Saiano F et al (2015) Notes on a new productive strain of king oyster mushroom, Pleurotus eryngii (higher Basidiomycetes), a prized Italian culinary-medicinal mushroom. Int J Med Mushrooms 17(2):199–206. https://doi.org/10.1615/intjmedmushrooms.v17.i2.110
Article
PubMed
Google Scholar
Venturella G, Saporita P, Gargano ML (2019) The potential role of medicinal mushrooms in the prevention and treatment of gynecological cancers: a review. Int J Med Mushrooms 21(3):225–235. https://doi.org/10.1615/intjmedmushrooms.2019030289
Article
PubMed
Google Scholar
Verma NK, Singh AP, Singh VK (2019) Agaricus bisporus (Fungi): chemical constituents and pharmacological activities—a review. AJPCR 7(2):82–87
CAS
Google Scholar
Vetter J (2003) Data on sodium content of common edible mushrooms. Food Chem 81(4):589–593. https://doi.org/10.1016/s0308-8146(02)00501-0
CAS
Article
Google Scholar
Villares A, García-Lafuente A, Guillamón E et al (2012) Identification and quantification of ergosterol and phenolic compounds occurring in Tuber spp. Truffles J Food Compos Anal 26:177–182. https://doi.org/10.1016/j.jfca.2011.12.003
CAS
Article
Google Scholar
Vita F, Taiti C, Pompeiano A et al (2015) Volatile organic compounds in truffle (Tuber magnatum Pico): comparison of samples from different regions of Italy and from different seasons. Sci Rep 5:12629. https://doi.org/10.1038/srep12629
CAS
Article
PubMed
Google Scholar
Vita F, Lucarotti V, Alpi E et al (2017) Proteins from Tuber magnatum Pico fruiting bodies naturally grown in different areas of Italy. Proteome Sci 11:7. https://doi.org/10.1186/1477-5956-11-7
CAS
Article
Google Scholar
Vita F, Franchina FA, Taiti C et al (2018) Environmental conditions influence the biochemical properties of the fruiting bodies of Tuber magnatum Pico. Sci Rep 8:7243. https://doi.org/10.1038/s41598-018-25520-7
CAS
Article
PubMed
PubMed Central
Google Scholar
Wang S, Marcone MF (2011) The biochemistry and biological properties of the world’s most expensive underground edible mushroom: Truffles. Food Res Int 44:2567–2581. https://doi.org/10.1016/j.foodres.2011.06.008
CAS
Article
Google Scholar
Wang S, Bao L, Han J et al (2013a) Pleurospiroketals A-E, Perhydrobenzannulated 5,5-Spiroketal sesquiterpenes from edible mushroom Pleurotus cornucopiae. J Nat Prod 76:45–50. https://doi.org/10.1021/np3006524
CAS
Article
PubMed
Google Scholar
Wang S, Bao L, Zhao F et al (2013b) Isolation, identification, and bioactivity of monoterpenoids and sesquiterpenoids from the mycelia of edible mushroom Pleurotus cornucopiae. J Agric Food Chem 61:5122–5129. https://doi.org/10.1016/j.foodchem.2013.11.062
CAS
Article
PubMed
Google Scholar
Wang D, Sun SQ, Wu WZ et al (2014a) Characterization of a water-soluble polysaccharide from Boletus edulis and its antitumor and immunomodulatory activities on renal cancer in mice. Carbohydr Polym 105:127–134. https://doi.org/10.1016/j.carbpol.2013.12.085
CAS
Article
PubMed
Google Scholar
Wang L, Zhang R, Ma Z et al (2014b) A feruloyl esterase (FAE) characterized by relatively high thermostability from the edible mushroom Russula virescens. Appl Biochem Biotech 172(2):993–1003. https://doi.org/10.1007/s12010-013-0536-0
CAS
Article
Google Scholar
Wang XM, Zhang J, Wu LH et al (2014c) A mini-review of chemical composition and nutritional value of edible wild-grown mushroom from China. Food Chem 151:279–285. https://doi.org/10.1016/j.foodchem.2013.11.062
CAS
Article
PubMed
Google Scholar
Wani BA, Bodha RH, Wani AH (2010) Nutritional and medicinal importance of mushrooms. J Med Plant Res 4(24):2598–2604. https://doi.org/10.5897/jmpr09.565
Article
Google Scholar
Wasser SP (2014) Medicinal mushroom science: current perspectives, advances, evidences, and challenges. Biomed J 37:345–356. https://doi.org/10.4103/2319-4170.138318
Article
PubMed
Google Scholar
Weijn A, Van den Berg-Somhorst DBPM, Slootweg JC et al (2013) Main phenolic compounds of the melanin biosynthesis pathway in bruising-tolerant and bruising-sensitive buttom mushroom (Agaricus bisporus) strains. J Agric Food Chem 61:8224–8231. https://doi.org/10.1021/jf4020558
CAS
Article
PubMed
Google Scholar
Wu X, Huang C, Chen Q et al (2014) A novel laccase with inhibitory activity towards HIV-I reverse transcriptase and antiproliferative effects on tumor cells from the fermentation broth of mushroom Pleurotus cornucopiae. Biomed Chromatogr 28:548–553. https://doi.org/10.1002/bmc.3068
CAS
Article
PubMed
Google Scholar
Xiao Y, Chen L, Fan Y et al (2019) The effect of boletus polysaccharides on diabetic hepatopathy in rats. Chem-Biol Interact 308:61–69. https://doi.org/10.1016/j.cbi.2019.05.013
CAS
Article
PubMed
Google Scholar
Xu Z, Fu L, Feng S et al (2019) Chemical composition, antioxidant and antihyperglycemic activities of the wild Lactarius deliciosus from China. Molecules 24:1357. https://doi.org/10.3390/molecules24071357
CAS
Article
PubMed Central
Google Scholar
Yang Q, Yin Y, Pan Y et al (2018) Anti-metastatic activity of Agrocybe aegerita galectin (AAL) in a mouse model of breast cancer lung metastasis. J Funct Foods 41:163–170. https://doi.org/10.1016/j.jff.2017.12.058
CAS
Article
Google Scholar
Yap H-YY, Tan N-H, Ng S-T et al (2018) Inhibition of protein glycation by tiger milk mushroom [Lignosus rhinoceros (Cooke) Ryvarden] and search for potential anti-diabetic activity-related metabolic pathways by genomic and transcriptomic data mining. Front Pharmacol 9:103. https://doi.org/10.3389/fphar.2018.00103
CAS
Article
PubMed
PubMed Central
Google Scholar
Yeh CW, Kan SC, Lin CC et al (2016) Polyhydroxylated steroids and triterpenoids from an entophytic fungus, Hypocreales sp. NCHU01 isolated from Tuber magnatum. J Taiwan Inst Chem E 64:22–30. https://doi.org/10.1016/j.jtice.2016.03.049
CAS
Article
Google Scholar
Yilmaz N, Türkekul I, Bulut S et al (2013) Fatty acid composition in ten mushroom species collected from middle black sea region of Turkey. Asian J Chem 25(3):1216–1220. https://doi.org/10.14233/ajchem.2013.12599a
CAS
Article
Google Scholar
Zhang Y, Mills GL, Nair MG (2003) Cyclooxygenase inhibitory and antioxidant compounds from the fruiting body of an edible mushroom, Agrocybe aegerita. Phytomedicine 10:386–390. https://doi.org/10.1078/0944-7113-00272
CAS
Article
PubMed
Google Scholar
Zhang A, Xiao N, He P et al (2011) Chemical analysis and antioxidant activity in vitro of polysaccharides extracted from Boletus edulis. Int J Biol Macromol 49:1092–1095. https://doi.org/10.1016/j.ijbiomac.2011.09.005
CAS
Article
PubMed
Google Scholar
Zhang J, Ma Z, Zheng L et al (2014) Purification and antioxidant activities of intracellular zinc polysaccharides from Pleurotus cornucopiae SS-03. Carbohydr Polym 111:947–954. https://doi.org/10.1016/j.carbpol.2014.04.074
CAS
Article
PubMed
Google Scholar
Zhang JJ, Li Y, Zhou T et al (2016) Bioactivities and health benefits of mushrooms mainly from China. Molecules 21:938. https://doi.org/10.3390/molecules21070938
CAS
Article
PubMed Central
Google Scholar
Zhang L, Hu Y, Duan X et al (2018) Characterization and antioxidant activities of polysaccharides from thirteen boletus mushrooms. Int J Biol Macromol 113:1–7. https://doi.org/10.1016/j.ijbiomac.2018.02.084
CAS
Article
PubMed
Google Scholar
Zhao YY, Shen X, Chao X et al (2011) Ergosta-4,6,8(14),22-tetraen-3-one induces G2/M cell cycle arrest and apoptosis in human hepatocellular carcinoma HepG2 cells. Biochim Biophy Acta Gen Subj 4:384–390. https://doi.org/10.1016/j.bbagen.2010.12.005
CAS
Article
Google Scholar
Zhao H, Li H, Lai Q et al (2019) Antioxidant and hepatoprotective activities of modified polysaccharides from Coprinus comatus in mice with alcohol-induced liver injury. Int J Biol Macromol 127:476–485. https://doi.org/10.1038/s41598-018-30104-6
CAS
Article
PubMed
Google Scholar
Zheng S, Li C, Ng TB et al (2007) A lectin with mitogenic activity from the edible wild mushroom Boletus edulis. Process Biochem 42:1620–1624. https://doi.org/10.1016/j.procbio.2007.09.004
CAS
Article
Google Scholar
Zhou S, Liu Y, Yang Y et al (2013) Separation and structural elucidation of a polysaccharide CC30w-1 from the fruiting body of Coprinus comatus. Bioact Carbohydr Dietary Fibre 1:99–104. https://doi.org/10.1016/j.bcdf.2013.03.003
CAS
Article
Google Scholar
Zhu MJ, Du F, Zhang GQ et al (2013) Purification a laccase exhibiting dye decolorizing ability from an edible mushroom Russula virescens. Int Biodeterior Biodegrad 82:33–39. https://doi.org/10.1016/j.ibiod.2013.02.010
CAS
Article
Google Scholar
Žurga S, Nanut MP, Kos J et al (2017) Fungal lectin MpL enables entry of protein drugs into cancer cells and their subcellular targeting. Oncotarget 8(16):26896–26910. https://doi.org/10.18632/oncotarget.15849
Article
PubMed Central
Google Scholar