Skip to main content
Log in

A Feruloyl Esterase (FAE) Characterized by Relatively High Thermostability from the Edible Mushroom Russula virescens

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

A monomeric feruloyl esterase (FAE) with a molecular mass of 62 kDa was acquired from fresh fruiting bodies of the edible mushroom Russula virescens. The isolation procedure involved ion exchange chromatography on CM-cellulose, Q-Sepharose, and SP-Sepharose and finally fast protein liquid chromatography–gel filtration on Superdex 75. Two amino acid sequences were obtained after tryptic digestion, and they both showed some homology with the esterase of some fungi. Maximal activity was observed at pH 5.0 and at 50 °C. The enzyme displayed relatively high thermostability as evidenced by over 70 % residual activity at 70 °C and about 34 % residual activity at 80 °C. The K m and V max for this enzyme on methyl ferulate were 0.19 mM and 1.65 U/mg proteins, respectively. The purified FAE prefers methyl ferulate over methyl caffeate and is least active on methyl p-coumarate. The FAE activity was not significantly affected by the presence of cations such as Mn2+, Ca2+, Cd2+, Zn2+, Mg2+, Cu2+, and K+ ions but inhibited by Al3+, Hg2+, Fe2+, and Pb2+ ions at a tested concentration of 2. 5 mM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Saha, B. (2003). Journal of Industrial Microbiology and Biotechnology, 30, 279–291.

    Article  CAS  Google Scholar 

  2. Keller, F., Hamilton, J., & Nguyen, Q. (2003). Applied Biochemistry and Biotechnology, 105, 27–41.

    Article  Google Scholar 

  3. Williamson, G., Kroon, P., & Faulds, C. (1998). Microbiology, 144, 2011–2023.

    Article  CAS  Google Scholar 

  4. Wong, D. (2006). Applied Biochemistry and Biotechnology, 133, 87–112.

    Article  CAS  Google Scholar 

  5. Pannala, R., Razaq, R., Halliwell, B., Singh, S., & Rice-Evans, C. (1998). Free Radical Biology and Medicine, 24, 594–606.

    Article  CAS  Google Scholar 

  6. Schroeter, H., Williams, R., Matin, R., Iversen, L., & Rice-Evans, C. (2000). Free Radical Biology and Medicine, 29, 1222–1233.

    Article  CAS  Google Scholar 

  7. Mackenzie, C., Bilous, D., Schneider, H., & Johnson, K. (1987). Applied and Environmental Microbiology, 53, 2835–2839.

    CAS  Google Scholar 

  8. Topakas, E., Vafiadi, C., & Christakopoulos, P. (2007). Process Biochemistry, 42, 497–509.

    Article  CAS  Google Scholar 

  9. Udatha, D., Kouskoumvekaki, I., Olsson, L., & Panagiotou, G. (2011). Biotechnology Advances, 29, 94–110.

    Article  CAS  Google Scholar 

  10. Topakas, E., Stamatis, H., Mastihubova, M., Biely, P., Kekos, D., Macris, B., et al. (2003). Enzyme and Microbial Technology, 33, 729–737.

    Article  CAS  Google Scholar 

  11. Vafiadi, C., Topakas, E., Alissandratos, A., Faulds, C., & Christakopoulos, P. (2008). Journal of Biotechnology, 133, 497–504.

    Article  CAS  Google Scholar 

  12. Record, E., Asther, M., Sigoillot, C., Pages, S., Punt, P., Delattre, M., et al. (2003). Applied Microbiology and Biotechnology, 62, 349–355.

    Article  CAS  Google Scholar 

  13. Tapin, S., Sigoillot, J., Asther, M., & Petit-conil, M. (2006). Journal of Agricultural and Food Chemistry, 54, 3697–3703.

    Article  CAS  Google Scholar 

  14. Laszlo, J., Compton, D., & Li, X. (2006). Industrial Crops and Products, 23, 46–53.

    Article  CAS  Google Scholar 

  15. Adenipekun, C., & Lawal, R. (2012). Biotechnology Molecular Biology Reviews, 7, 62–68.

    CAS  Google Scholar 

  16. Mackenzie, C., & Bilous, D. (1988). Applied Environmental Microbiology, 54, 1170–1173.

    CAS  Google Scholar 

  17. Linke, D., Matthes, R., Nimtz, M., Zorn, H., Bunzel, M., & Berger, R. (2013). Applied Microbiology and Biotechnology, 97, 7241–7251.

    Article  CAS  Google Scholar 

  18. Wang, Y., Yang, G., & Di, Y. (2005). Chinese Journal of Natural Medicines, 7, 19–21.

    Google Scholar 

  19. Sun, Z., Zhang, L., Zhang, B., & Niu, T. (2010). Food Chemistry, 118, 675–680.

    Article  CAS  Google Scholar 

  20. Ralet, M., Faulds, C., Williamson, G., & Thibault, J. (1994). Carbohydrate Research, 263, 257–269.

    Article  CAS  Google Scholar 

  21. Laemmli, U., & Favre, M. (1973). Journal of Molecular Biology, 80, 575–599.

    Article  CAS  Google Scholar 

  22. Wang, S., Liu, Y., Zhang, G., Zhao, S., Xu, F., Geng, X., et al. (2012). Journal of Bioscience and Bioengineering, 113, 42–47.

    Article  CAS  Google Scholar 

  23. Topakas, E., Stamatis, H., Biely, P., & Christakopoulos, P. (2004). Applied Microbiology and Biotechnology, 63, 686–690.

    Article  CAS  Google Scholar 

  24. Hegde, S., & Muralikrishna, G. (2009). World Journal of Microbiology Biotechnology, 25, 1963–1969.

    Article  CAS  Google Scholar 

  25. Kroon, P., Faulds, C., Brïzillon, C., & Williamson, G. (1997). European Journal of Biochemistry, 248, 245–251.

    Article  CAS  Google Scholar 

  26. Shin, H., & Chen, R. (2006). Enzyme Microbial Biotechnology, 38, 478–485.

    Article  CAS  Google Scholar 

  27. Koseki, T., Hori, A., Seki, S., Murayama, T., & Shiono, Y. (2009). Applied Environmental Microbiology, 83, 689–696.

    CAS  Google Scholar 

  28. Chandrasekaran, G., Kim, G., & Shin, H. (2011). Food Chemistry, 124, 1376–1381.

    Article  CAS  Google Scholar 

  29. Ertunga, N., Cakmak, U., Colak, A., Faiz, O., & Sesli, E. (2009). Food Chemistry, 115, 1486–1490.

    Article  CAS  Google Scholar 

  30. Colak, A., Camedan, Y., Faiz, O., Sesli, E., & Kolcuoglu, Y. (2009). Journal of Food Biochemistry, 33, 482–499.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by National Grants of China (Biomass dissociation and low-molecular fragment green monomerization and transformation, 2010CB732202).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hexiang Wang or Tzibun Ng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, L., Zhang, R., Ma, Z. et al. A Feruloyl Esterase (FAE) Characterized by Relatively High Thermostability from the Edible Mushroom Russula virescens . Appl Biochem Biotechnol 172, 993–1003 (2014). https://doi.org/10.1007/s12010-013-0536-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-013-0536-0

Keywords

Navigation