Skip to main content
Log in

Bioactivity and bioavailability of phytoene and strategies to improve its production

  • Published:
Phytochemistry Reviews Aims and scope Submit manuscript

Abstract

Phytoene is a valuable colourless carotenoid, which is used as an ingredient in nutraceuticals as well as in cosmetic products. Its use in formulations has several advantages over other carotenoids due to its stability, photo-insensitivity and long shelf life. In addition, phytoene has beneficial effects on human health because it is an antioxidant which inhibits lipoprotein oxidation and protects against UVB light, while some studies have suggested that it could also have anticancer activity and could decrease cholesterol levels. For these reasons, the demand for phytoene has increased, and new strategies that will allow the production of this bioactive compound in high amounts are needed. The use of in vitro cultures of plants, algae and microorganisms has been suggested as a biotechnological strategy to obtain phytoene. In addition, many tools and strategies are available for metabolic engineering that will allow increasing phytoene to be increased using a variety of in vivo systems. The source of the phytoene biosynthetic pathway genes used, the design of the construction to express the same and the host strains used, among other factors, can modify the efficiency of the process to obtain phytoene in high amounts. This review focuses on the strategies used to enhance the production of phytoene, using in vitro cultures of plants, algae and microorganisms. Special attention is paid to increasing the production of phytoene using metabolic engineering strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

CPTA:

2-(4-Chlorophenylthio)-triethylamine

crtB :

Bacterial phytoene synthase

crtE :

Geranylgeranyl diphosphate synthase

crtI-MT:

crtI gene mutated

crtI-T:

crtI gene truncated

CrtM:

4,4′-Diapophytoene synthase

crtW and bkt :

Bacterial ketolase genes

crtY :

Lycopene β-cyclase

DW:

Dry weight

ECC-1:

Endometrial tumoral cells

FPP:

C15-farnesyl pyrophosphate

FW:

Fresh weight

GGPP:

C20-geranylgeranyl diphosphate

GPP:

C10-geranyl pyrophosphate

hmgr :

Hydroxymethyl-3-glutaryl coenzyme A reductase

MEP:

2-C-methyl-derythritol-4-phosphate

MVA:

Mevalonate pathway

NIH3T3:

Cell cultures of fibroblasts

PDS:

Phytoene desaturase

PSY:

Phytoene synthase

T47D and MCF-7:

Human breast tumoral cells

References

  • Alquezar B, Rodrigo MJ, Lado J, Zacarías LA (2013) Comparative physiological and transcriptional study of carotenoid biosynthesis in white and red grapefruit (Citrus paradisi Macf). Tree Genet Genomes 9:1257–1269

    Article  Google Scholar 

  • Ampomah-Dwamena C, Driedonks N, Lewis D, Shumskaya M, Chen X, Wurtzel ET, Allan AC (2015) The Phytoene synthase gene family of apple (Malus × domestica) and its role in controlling fruit carotenoid content. BMC Plant Biol 15:185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arango J, Wüst F, Beyer P, Welsch R (2010) Characterization of phytoene synthases from cassava and their involvement in abiotic stress-mediated responses. Planta 232:1251–1262

    Article  CAS  PubMed  Google Scholar 

  • Aust O, Stahl W, Sies H, Tronnier H, Heinrich U (2005) Supplementation with tomato-based products increases lycopene, phytofluene, and phytoene levels in human serum and protects against UV-light-induced erythema. Int J Vitam Nutr Res 75:54–60

    Article  CAS  PubMed  Google Scholar 

  • Azadi P, Otang NV, Chin DP, Nakamura I, Fujisawa M, Harada H, Misawa M, Mii M (2010) Metabolic engineering of Lilium × formolongi using multiple genes of the carotenoid biosynthesis pathway. Plant Biotechnol Rep 4:269–280

    Article  Google Scholar 

  • Bartley GE, Scolnik P (1993) cDNA cloning, expression during development, and genome mapping of PSY2, a second tomato gene encoding phytoene synthase. J Biol Chem 268:25718–25721

    CAS  PubMed  Google Scholar 

  • Ben-Dor A, Steiner M, Gheber L, Danilenko M, Dubi N, Linnewiel K, Zick A, Sharoni Y, Levy J, Ben Dor A (2005) Carotenoids activate the antioxidant response element transcription system. Mol Cancer Ther 4:177–186

    CAS  PubMed  Google Scholar 

  • Biehler E, Alkerwi AA, Hoffmann L, Krause E, Guillaume M, Lair ML, Bohn T (2012) Contribution of violaxanthin, neoxanthin, phytoene and phytofluene to total carotenoid intake: assessment in Luxembourg. J Food Compos Anal 25:56–65

    Article  CAS  Google Scholar 

  • Bohn T, Desmarchelier C, Dragsted LO, Nielsen CS, Stahl W, Rühl R, Ellipsis Borel P (2017) Host-related factors explaining interindividual variability of carotenoid bioavailability and tissue concentrations in humans. Mol Nutr Food Res 61:1600685

    Article  CAS  PubMed Central  Google Scholar 

  • Bonk M, Hoffmann B, Von Lintig J, Schledz M, Al-Babili S, Hobeika E, Kleinig H, Beyer P (1997) Chloroplast import of four carotenoid biosynthetic enzymes in vitro reveals differential fates prior to membrane binding and oligomeric assembly. Eur J Biochem 247:942–950

    Article  CAS  PubMed  Google Scholar 

  • Burkhardt PK, Beyer P, Wünn J, Klöti A, Armstrong GA, Schledz M, von Lintig Potrykus I (1997) Transgenic rice (Oryza sativa) endosperm expressing daffodil (Narcissus pseudonarcissus) phytoene synthase accumulates phytoene, a key intermediate of provitamin A biosynthesis. Plant J 11:1071–1078

    Article  CAS  PubMed  Google Scholar 

  • Busch M, Seuter A, Hain R (2002) Functional analysis of the early steps of carotenoid biosynthesis in tobacco. Plant Physiol 128:439–453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cai C, Zhang X, Niu E, Zhao L, Li N, Wang L, Guo W (2014) GhPSY, a phytoene synthase gene, is related to the red plant phenotype in upland cotton (Gossypium hirsutum L.). Mol Biol Rep 41:4941–4952

    Article  CAS  PubMed  Google Scholar 

  • Campbell JK, Rogers RB, Lila MA, Erdman JW (2006) Biosynthesis of 14C-phytoene from tomato cell suspension cultures (Lycopersicon esculentum) for utilization in prostate cancer cell culture studies. J Agric Food Chem 54:747–755

    Article  CAS  PubMed  Google Scholar 

  • Campbell JK, Engelmann NJ, Lila MA, Erdman JW (2007) Phytoene, phytofluene, and lycopene from tomato powder differentially accumulate in tissues of male fisher 344 rats. Nutr Res 27:794–801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Campisi L, Fambrini M, Michelotti V, Salvini M, Giuntini D, Pugliesi C (2006) Phytoene accumulation in sunflower decreases the transcript levels of the phytoene synthase gene. Plant Growth Regul 48:79–87

    Article  CAS  Google Scholar 

  • Cazzonelli CI, Pogson BJ (2010) Source to sink: regulation of carotenoid biosynthesis in plants. Trends Plant Sci 15:266–274

    Article  CAS  PubMed  Google Scholar 

  • Chattopadhyay S, Srivastava AK, Bhojwani SS, Bisaria VS (2002) Production of podophyllotoxin by plant cell cultures of Podophyllum hexandrum in bioreactor. J Biosci Bioeng 93:215–220

    Article  CAS  PubMed  Google Scholar 

  • Chaudhary N, Nijhawan A, Khurana JP, Khurana P (2010) Carotenoid biosynthesis genes in rice: structural analysis, genome-wide expression profiling and phylogenetic analysis. Mol Genet Genom 283:13–33

    Article  CAS  Google Scholar 

  • Cooperstone JL, Ralston RA, Riedl KM, Haufe TC, Schweiggert RM, King SA, Timmers D, Coulson J (1980) Miscellaneous naturally occurring coloring materials for foodstuff. In: Walford J (ed) Developments in food colour. Applied Science Publishers, London, pp 189–218

    Google Scholar 

  • Cooperstone JL, Ralston RA, Riedl KM, Haufe TC, Schweiggert RM, King SA, Schwartz SJ (2015) Enhanced bioavailability of lycopene when consumed as cis-isomers from tangerine compared to red tomato juice, a randomized, cross-over clinical trial. Mol Nutr Food Res 59(4):658–669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coyago-Cruz E, Corell M, Stinco CM, Hernanz D, Moriana A, Meléndez-Martínez AJ (2017) Effect of regulated deficit irrigation on quality parameters, carotenoids and phenolics of diverse tomato varieties (Solanum lycopersicum L.). Food Res Int 96:72–83

    Article  CAS  PubMed  Google Scholar 

  • Cunningham FX Jr, Gantt E (1998) Genes and enzymes of carotenoid biosynthesis in plants. Annu Rev Plant Biol 49:557–583

    Article  CAS  Google Scholar 

  • Da Silva NA, Srikrishnan S (2012) Introduction and expression of genes for metabolic engineering applications in Saccharomyces cerevisiae. FEMS Yeast Res 12:197–214

    Article  CAS  PubMed  Google Scholar 

  • Dall’Osto L, Fiore A, Cazzaniga S, Giuliano G, Bassi R (2007) Different roles of α-and β-branch xanthophylls in photosystem assembly and photoprotection. J Biol Chem 282:35056–35068

    Article  CAS  PubMed  Google Scholar 

  • DellaPenna D, Pogson BJ (2006) Vitamin synthesis in plants: tocopherols and carotenoids. Annu Rev Plant Biol 57:711–738

    Article  CAS  PubMed  Google Scholar 

  • Dibari B, Murat F, Chosson A, Gautier V, Poncet C, Lecomte P, Mercier I, Bergès H, Pont C, Blanco A (2012) Deciphering the genomic structure, function and evolution of carotenogenesis related phytoene synthases in grasses. BMC Genom 13:221

    Article  CAS  Google Scholar 

  • Dogbo O, Laferriére A, D’Harlingue A, Camara B (1988) Carotenoid biosynthesis: isolation and characterization of a bifunctional enzyme catalyzing the synthesis of phytoene. Proc Natl Acad Sci USA 85:7054–7058

    Article  CAS  PubMed  Google Scholar 

  • Dufossé L, Galaup P, Yaron A, Arad SM, Blanc P, Murphy KNC, Ravishankar GA (2005) Microorganisms and microalgae as sources of pigments for food use: A scientific oddity or an industrial reality? Trends Food Sci Technol 16:389–406

    Article  CAS  Google Scholar 

  • Eliassen AH, Hendrickson SJ, Brinton LA, Buring JE, Campos H, Dai Q, Hallmans G (2012) Circulating carotenoids and risk of breast cancer: pooled analysis of eight prospective studies. J Natl Cancer Inst 104:1905–1916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Engelmann NJ, Rogers RB, Lila MA, Erdman JW Jr (2009) Herbicide treatments alter carotenoid profiles for 14C tracer production from tomato (Solanum lycopersicum cv. VFNT cherry) cell cultures. J Agric Food Chem 57:4614–4619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Engelmann NJ, Campbell JK, Rogers RB, Rupassara SI, Garlick PJ, Lila MA, Erdman JW Jr (2010a) Screening and selection of high carotenoid producing in vitro tomato cell culture lines for [13C]-carotenoid production. J Agric Food Chem 58:9979–9987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Engelmann NJ, Rogers RB, Rupassara SI, Garlick PJ, Lila MA, Erdman JW (2010b) Production of [13C]-lycopene from high lycopene tomato cell suspension cultures. FASEB J 24:539–546

    Google Scholar 

  • Exposito O, Bonfill M, Moyano E, Onrubia M, Mirjalili MH, Cusidó RM, Palazón J (2009) Biotechnological production of taxol and related taxoids: current state and prospects. Anticancer Agents Med Chem 9:109–121

    Article  CAS  PubMed  Google Scholar 

  • Fantini E, Falcone G, Frusciante S, Giliberto L, Giuliano G (2013) Dissection of tomato lycopene biosynthesis through virus-induced gene silencing. Plant Physiol 163:986–998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Filardo EJ (2017) A role for G-protein coupled estrogen receptor (GPER) in estrogen-induced carcinogenesis: dysregulated glandular homeostasis, survival and metastasis. J Steroid Biochem Mol Biol 176:38–48

    Article  CAS  PubMed  Google Scholar 

  • Fowler ZL, Shah K, Panepinto JC, Jacobs A, Koffas MA (2011) Development of nonnatural flavanones as antimicrobial agents. PLoS ONE 6:e25681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fraser P, Schuch W, Bramley P (2000) Phytoene synthase from tomato (Lycopersicon esculentum) chloroplasts—partial purification and biochemical properties. Planta 211:361–369

    Article  CAS  PubMed  Google Scholar 

  • Fraser PD, Romer S, Shipton CA, Mills PB, Kiano JW, Misawa N, Bramley PM (2002) Evaluation of transgenic tomato plants expressing an additional phytoene synthase in a fruit-specific manner. PNAS 99:1092–1097

    Article  CAS  PubMed  Google Scholar 

  • Fraser PD, Enfissi EM, Halket JM, Truesdale MR, Yu D, Gerrish C, Bramley PM (2007) Manipulation of phytoene levels in tomato fruit: effects on isoprenoids, plastids, and intermediary metabolism. Plant Cell 19:3194–3211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fuke T, Sato T, Jha S, Tansengco ML, Atomi H (2018) Phytoene production utilizing the isoprenoid biosynthesis capacity of Thermococcus kodakarensis. Extremophiles 22:301–313

    Article  CAS  PubMed  Google Scholar 

  • Fuller B, Smith D, Howerton A, Kern D (2006) Anti-inflammatory effects of CoQ10 and colorless carotenoids. J Cosmet Dermatol 5:30–38

    Article  PubMed  Google Scholar 

  • Gao H, Xu J, Liu X, Liu B, Deng X (2011) Light effect on carotenoids production and expression of carotenogenesis genes in Citrus callus of four genotypes. Acta Physiol Plant 33:2485–2492

    Article  CAS  Google Scholar 

  • Gassel S, Breitenbach J, Sandmann G (2014) Genetic engineering of the complete carotenoid pathway towards enhanced astaxanthin formation in Xanthophyllomyces dendrorhous starting from a high-yield mutant. Appl Microbiol Biotechnol 98:345–350

    Article  CAS  PubMed  Google Scholar 

  • González A, Álvarez-García V, Martínez-Campa C, Alonso-González C, Cos S (2016) Melatonin inhibits the growth of dmba-induced mammary tumors by regulating estrogen sulfatase enzyme. Adv Cancer Drug Targets 181:274–278

    Google Scholar 

  • Harker M, Young AJ (1995) Inhibition of astaxanthin synthesis in the green alga, Haematococcus pluvialis. Eur J Phycol 30:179–187

    Article  Google Scholar 

  • Hirsch K, Atzmon A, Danilenko M, Levy J, Sharoni Y (2007) Lycopene and other carotenoids inhibit estrogenic activity of 17β-estradiol and genistein in cancer cells. Breast Cancer Res Treat 104:221–230

    Article  CAS  PubMed  Google Scholar 

  • Jeffery J, Holzenburg A, King S (2012) Physical barriers to carotenoid bioaccessibility. Ultrastructure survey of chromoplast and cell wall morphology in nine carotenoid-containing fruits and vegetables. J Sci Food Agric 92:2594–2602

    Article  CAS  PubMed  Google Scholar 

  • Karppi J, Kurl S, Mäkikallio TH, Ronkainen K, Laukkanen JA (2013) Low levels of plasma carotenoids are associated with an increased risk of atrial fibrillation. Eur J Epidemiol 28:45–53

    Article  CAS  PubMed  Google Scholar 

  • Khachik F, Carvalho L, Bernstein PS, Muir GJ, Zhao DY, Katz NB (2002) Chemistry, distribution, and metabolism of tomato carotenoids and their impact on human health. Exp Biol Med 227:845–851

    Article  CAS  Google Scholar 

  • Kumar G, Tuli HS, Mittal S, Shandilya JK, Tiwari A, Sandhu SS (2015) Isothiocyanates: a class of bioactive metabolites with chemopreventive potential. Tumor Biol 36:4005–4016

    Article  CAS  Google Scholar 

  • Lawrence S, Cline K, Moore G (1993) Chromoplast-targeted proteins in tomato (Lycopersicon esculentum Mill.) fruit. Plant Physiol 102:789–794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li F, Vallabhaneni R, Wurtzel ET (2008a) PSY3, a new member of the phytoene synthase gene family conserved in the Poaceae and regulator of abiotic stress-induced root carotenogenesis. Plant Physiol 146:1333–1345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li F, Vallabhaneni R, Yu J, Rocheford T, Wurtzel ET (2008b) The maize phytoene synthase gene family: overlapping roles for carotenogenesis in endosperm, photomorphogenesis, and thermal stress tolerance. Plant Physiol 147:1334–1346

    Article  PubMed  PubMed Central  Google Scholar 

  • Liang MH, Zhu J, Jiang JG (2017) Carotenoids biosynthesis and cleavage related genes from bacteria to plants. Crit Rev Food Sci 19:1–20

    Google Scholar 

  • Linnewiel-Hermoni K, Khanin M, Danilenko M, Zango G, Amosi Y, Levy J, Sharoni Y (2015) The anti-cancer effects of carotenoids and other phytonutrients resides in their combined activity. Arch Biochem Biophys 572:28–35

    Article  CAS  PubMed  Google Scholar 

  • Lintig J, Welsch R, Bonk M, Giuliano G, Batschauer A, Kleinig H (1997) Light-dependent regulation of carotenoid biosynthesis occurs at the level of phytoene synthase expression and is mediated by phytochrome in Sinapis alba and Arabidopsis thaliana seedlings. Plant J 12:625–634

    Article  Google Scholar 

  • Lu CH, Choi JH, Moran N, Jin YS, JrJW Erdman (2011a) Laboratory-scale production of 13C-labeled lycopene and phytoene by bioengineered Escherichia coli. J Agric Food Chem 59:9996–10005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu CHP, Choi JH, Jin YS, Erdman JW (2011b) Laboratory-scale production of tomato carotenoids using bioengineered Escherichia coli. FASEB J 25:581–584

    Google Scholar 

  • Maass D, Arango J, Wüst F, Beyer P, Welsch R (2009) Carotenoid crystal formation in Arabidopsis and carrot roots caused by increased phytoene synthase protein levels. PLoS ONE 4:e6373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mapelli-Brahm P, Corte-Real J, Meléndez-Martínez AJ, Bohn T (2017) Bioaccessibility of phytoene and phytofluene is superior to other carotenoids from selected fruit and vegetable juices. Food Chem 229:304–311

    Article  CAS  PubMed  Google Scholar 

  • Mapelli-Brahm P, Stinco CM, Rodrigo MJ, Zacarías L, Meléndez-Martínez AJ (2018) Impact of thermal treatments on the bioaccessibility of phytoene and phytofluene in relation to changes in the microstructure and size of orange juice particles. J Funct Food 46:38–47

    Article  CAS  Google Scholar 

  • Martínez A, Stinco CM, Melendez-Martinez AJ (2014) Free radical scavenging properties of phytofluene and phytoene isomers as compared to lycopene: a combined experimental and theoretical study. J Phys Chem B 118:9819–9825

    Article  CAS  PubMed  Google Scholar 

  • Mathews-Roth MM (1982) Antitumor activity of β-carotene, canthaxanthin and phytoene. Oncology 39:33–37

    Article  CAS  PubMed  Google Scholar 

  • Matsubara K, Shigekazu K, Yoshioka T, Fujita Y, Yamada Y (1989) High density culture of Coptis japonica cells increases berberine production. J Chem Technol Biotechnol 46:61–69

    Article  CAS  Google Scholar 

  • Meléndez-Martínez AJ, Britton G, Vicario IM, Heredia FJ (2007) Relationship between the colour and the chemical structure of carotenoid pigments. Food Chem 101:1145–1150

    Article  CAS  Google Scholar 

  • Melendez-Martinez AJ, Wang Y, Mein JR, Wang XD (2010) Tomato extract supplementation results in a preferential accumulation of hepatic phytoene and phytofluene and decreased plasma total cholesterol levels in high fat diet fed rats. FASEB J 24:539–542

    Google Scholar 

  • Meléndez-Martínez AJ, Mapelli-Brahm P, Benítez-González A, Stinco CMA (2015) A comprehensive review on the colorless carotenoid phytoene and phytofluene. Arch Biochem Biophys 572:188–200

    Article  CAS  PubMed  Google Scholar 

  • Meléndez-Martínez AJ, Mapelli-Brahm P, Stinco CM (2018) The colourless carotenoids phytoene and phytofluene: from dietary sources to their usefulness for the functional foods and nutricosmetics industries. J Food Compos Anal 67:91–103

    Article  CAS  Google Scholar 

  • Moise AR, Al-Babili S, Wurtzel ET (2013) Mechanistic aspects of carotenoid biosynthesis. Chem Rev 114:164–193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moran NE, Clinton SK, Erdman JW Jr (2013) Differential bioavailability, clearance, and tissue distribution of the acyclic tomato carotenoids lycopene and phytoene in mongolian gerbils. J Nutr 143:1920–1926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moran NE, Novotny JA, Cichon MJ, Riedl KM, Rogers RB, Grainger EM, Erdman JW Jr, Clinton SK (2015) Absorption and distribution kinetics of the 13C-labeled tomato carotenoid phytoene in healthy adults. J Nutr 146:368–376

    Article  PubMed  PubMed Central  Google Scholar 

  • Moran NE, Novotny JA, Cichon MJ, Riedl KM, Rogers RB, Grainger EM, Schwartz SJ, Erdman JW, Clinton SK (2016) Absorption and distribution kinetics of the 13C-labeled tomato carotenoid phytoene in healthy adults. J Nutr 146:368–376

    Article  CAS  PubMed  Google Scholar 

  • Müller H, Bub A, Watzl B, Rechkemmer G (1999) Plasma concentrations of carotenoids in healthy volunteers after intervention with carotenoid-rich foods. Eur J Nutr 38:35–44

    Article  PubMed  Google Scholar 

  • Paetau I, Khachik F, Brown ED, Beecher GR, Kramer TR, Chittams J, Clevidence BA (1998) Chronic ingestion of lycopene-rich tomato juice or lycopene supplements significantly increases plasma concentrations of lycopene and related tomato carotenoids in humans. Am J Clin Nutr 68:1187–1195

    Article  CAS  PubMed  Google Scholar 

  • Pickens LB, Tang Y, Chooi Y-H (2011) Metabolic engineering for the production of natural products. Annu Rev Chem Biomol Eng 2:211–236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pierce EC, LaFayette PR, Ortega MA, Joyce BL, Kopsell DA, Parrott WA (2015) Ketocarotenoid production in soybean seeds through metabolic engineering. PLoS ONE 10:e0138196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pollmann H, Breitenbach J, Sandmann G (2017) Development of Xanthophyllomyces dendrorhous as a production system for the colorless carotene phytoene. J Biotechnol 247:34–41

    Article  CAS  PubMed  Google Scholar 

  • Porrini M, Riso P, Brusamolino A, Berti C, Guarnieri S, Visioli F (2005) Daily intake of a formulated tomato drink affects carotenoid plasma and lymphocyte concentrations and improves cellular antioxidant protection. Br J Nutr 93:93–99

    Article  CAS  PubMed  Google Scholar 

  • Ramirez-Estrada K, Vidal-Limon H, Hidalgo D, Moyano E, Golenioswki M, Cusidó RM, Palazon J (2016) Elicitation, an effective strategy for the biotechnological production of bioactive high-added value compounds in plant cell factories. Molecules 21:182–206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rao SR, Ravishankar GA (2002) Plant cell cultures: chemical factories of secondary metabolites. Biotechnol Adv 20:101–153

    Article  CAS  PubMed  Google Scholar 

  • Ravanello MP, Ke D, Alvarez J, Huang B, Shewmaker CK (2003) Coordinate expression of multiple bacterial carotenoid genes in canola leading to altered carotenoid production. Metab Eng 5:255–263

    Article  CAS  PubMed  Google Scholar 

  • Rodrigo MJ, Cilla A, Barberá R, Zacarías L (2015) Carotenoid bioaccessibility in pulp and fresh juice from carotenoid-rich sweet oranges and mandarins. Food Funct 6:1950–1959

    Article  CAS  PubMed  Google Scholar 

  • Schmidt I, Schewe H, Gassel S, Jin C, Buckingham J, Hümbelin M, Sandmann G, Schrader J (2011) Biotechnological production of astaxanthin with Phaffia rhodozyma/Xanthophyllomyces dendrorhous. Appl Microbiol Biotechnol 89:555–571

    Article  CAS  PubMed  Google Scholar 

  • Shaish A, Harari A, Kamari Y, Soudant E, Harats D, Ben-Amotz AA (2008) Carotenoid algal preparation containing phytoene and phytofluene inhibited LDL oxidation in vitro. Plant Foods Hum Nutr 63:83–86

    Article  CAS  PubMed  Google Scholar 

  • Shumskaya M, Wurtzel ET (2013) The carotenoid biosynthetic pathway: thinking in all dimensions. Plant Sci 208:58–63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shumskaya M, Bradbury LMT, Monaco RR, Wurtzel ET (2012) Plastid localization of the key carotenoid enzyme phytoene synthase is altered by isozyme, allelic variation, and activity. Plant Cell 24:3725–3741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simkin AJ, Breitenbach J, Kuntz M, Sandmann G (2000) In vitro and in situ inhibition of carotenoid biosynthesis in Capsicum annuum by bleaching herbicides. J Agric Food Chem 48:4676–4680

    Article  CAS  PubMed  Google Scholar 

  • Srinivasan R, Babu S, Gothandam KM (2017) Accumulation of phytoene, a colorless carotenoid by inhibition of phytoene desaturase (PDS) gene in Dunaliella salina V-101. Bioresour Technol 242:311–318

    Article  CAS  PubMed  Google Scholar 

  • Tao N, Hu Z, Liu Q, Xu J, Cheng Y, Guo L, Deng X (2007) Expression of phytoene synthase gene (Psy) is enhanced during fruit ripening of Cara Cara navel orange (Citrus sinensis Osbeck). Plant Cell Rep 26:837–843

    Article  CAS  PubMed  Google Scholar 

  • Toledo-Ortiz G, Huq E, Rodríguez-Concepción M (2010) Direct regulation of phytoene synthase gene expression and carotenoid biosynthesis by phytochrome-interacting factors. Proc Natl Acad Sci USA 107:11626–11631

    Article  PubMed  Google Scholar 

  • Tran D, Haven J, Qiu WG, Polle JE (2009) An update on carotenoid biosynthesis in algae: phylogenetic evidence for the existence of two classes of phytoene synthase. Planta 229:723–729

    Article  CAS  PubMed  Google Scholar 

  • Umeno D, Tobias AV, Arnold FH (2002) Evolution of the C30 carotenoid synthase CrtM for function in a C40 pathway. J Bacteriol 184:6690–6699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • von Oppen-Bezalel L (2007) UVA, a main concern in sun damage: protection from the inside and outside with phytoene, phytofluene, the colorless carotenoids and more. SOFW J 133:29–34

    Google Scholar 

  • von Oppen-Bezalel L, Shaish A (2009) Application of the colorless carotenoids, phytoene, and phytofluene in cosmetics, wellness, nutrition, and therapeutics. In: Ben-Amotz A, Polle J, Rao S (eds) The alga dunaliella: biodiversity, physiology, genomics & biotechnology. Science Publishers, Enfield, pp 423–444

    Chapter  Google Scholar 

  • von Oppen-Bezalel L, Havas F, Ramot O, Kalo E, Fishbein D, Ben-Chitrit O (2014) Phytoene and phytofluene for (photo) protection, anti aging: lightening and evening of skin tone. SOFW J 140:8–12

    Google Scholar 

  • von Oppen-Bezalel L, Fishbein D, Havas F, Ben-Chitrit O, Khaiat A (2015) The photoprotective effects of a food supplement tomato powder rich in phytoene and phytofluene, the colorless carotenoids, a preliminary study. Glob Dermatol 2:178–182

    Google Scholar 

  • Walter MH, Strack D (2011) Carotenoids and their cleavage products: biosynthesis and functions. Natl Prod Rep 28:663–692

    Article  CAS  Google Scholar 

  • Welsch R, Medina J, Giuliano G, Beyer P, Von Lintig J (2003) Structural and functional characterization of the phytoene synthase promoter from Arabidopsis thaliana. Planta 216:523–534

    CAS  PubMed  Google Scholar 

  • Welsch R, Wüst F, Bär C, Al-Babili S, Beyer P (2008) A third phytoene synthase is devoted to abiotic stress-induced abscisic acid formation in rice and defines functional diversification of phytoene synthase genes. Plant Physiol 147:367–380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Werman MJ, Mokady S, Ben-Amotz A (2002) Bioavailability of the isomer mixture of phytoene and phytofluene-rich alga Dunaliella bardawil in rat plasma and tissues. J Nutr Biochem 13:585–591

    Article  CAS  PubMed  Google Scholar 

  • Wozniak A, Lozano C, Barahona S, Niklitschek M, Marcoleta A, Alcaíno J, Sepulveda D, Baeza M, Cifuentes V (2011) Differential carotenoid production and gene expression in Xanthophyllomyces dendrorhous grown in a nonfermentable carbon source. FEMS Yeast Res 11:252–262

    Article  CAS  PubMed  Google Scholar 

  • Yamano S, Ishii T, Nakagawa M, Ikenaga H, Misawa N (1994) Metabolic engineering for production of β-carotene and lycopene in Saccharomyces cerevisiae. Biosci Biotechnol Biochem 58:1112–1114

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Ministerio de Economía y Competitividad (BIO2017-82374-R) and Fundación Seneca-Agencia de Ciencia y Tecnología de la Región de Murcia (19876/GERM/15).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lorena Almagro Romero.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miras-Moreno, B., Pedreño, M.Á. & Romero, L.A. Bioactivity and bioavailability of phytoene and strategies to improve its production. Phytochem Rev 18, 359–376 (2019). https://doi.org/10.1007/s11101-018-9597-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11101-018-9597-6

Keywords

Navigation