Skip to main content
Log in

Phytoene production utilizing the isoprenoid biosynthesis capacity of Thermococcus kodakarensis

  • Original Paper
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

Phytoene (C40H64) is an isoprenoid and a precursor of various carotenoids which are of industrial value. Archaea can be considered to exhibit a relatively large capacity to produce isoprenoids, as they are components of their membrane lipids. Here, we aimed to produce isoprenoids such as phytoene in the hyperthermophilic archaeon Thermococcus kodakarensis. T. kodakarensis harbors a prenyltransferase gene involved in the biosynthesis of farnesyl pyrophosphate and geranylgeranyl pyrophosphate, which are precursors of squalene and phytoene, respectively. However, homologs of squalene synthase and phytoene synthase, which catalyze their condensation reactions, are not found on the genome. Therefore, a squalene/phytoene synthase homolog from an acidothermophilic archaeon Sulfolobus acidocaldarius, Saci_1734, was introduced into the T. kodakarensis chromosome under the control of a strong promoter. Production of the Saci_1734 protein was confirmed in this strain, and the generation of phytoene was detected (0.08–0.75 mg L−1 medium). We then carried out genetic engineering in order to increase the phytoene production yield. Disruption of an acetyl-CoA synthetase I gene involved in hydrolyzing acetyl-CoA, the precursor of phytoene, together with the introduction of a second copy of Saci_1734 led to a 3.4-fold enhancement in phytoene production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ACS:

Acetyl-CoA synthetase

ASW:

Artificial sea water

YT:

Yeast extract and tryptone

AA:

20 Amino acids

S0 :

Elemental sulfur

Pyr:

Pyruvate

Mdx:

Maltodextrin

5-FOA:

5-Fluoroorotic acid

Ura:

Uracil

FPP:

Farnesyl pyrophosphate

GGPP:

Geranylgeranyl pyrophosphate

IPP:

Isopentenyl pyrophosphate

GPP:

Geranyl pyrophosphate

csg:

Cell surface glycoprotein

References

  • Atomi H, Fukui T, Kanai T, Morikawa M, Imanaka T (2004) Description of Thermococcus kodakaraensis sp. nov., a well studied hyperthermophilic archaeon previously reported as Pyrococcus sp. KOD1. Archaea 1:263–267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Awano T, Wilming A, Tomita H, Yokooji Y, Fukui T, Imanaka T, Atomi H (2014) Characterization of two members among the five ADP-forming acyl coenzyme A (Acyl-CoA) synthetases reveals the presence of a 2-(Imidazol-4-yl)acetyl-CoA synthetase in Thermococcus kodakarensis. J Bacteriol 196:140–147

    Article  PubMed  PubMed Central  Google Scholar 

  • Bräsen C, Esser D, Rauch B, Siebers B (2014) Carbohydrate metabolism in Archaea: current insights into unusual enzymes and pathways and their regulation. Microbiol Mol Biol Rev 78:89–175

    Article  PubMed  PubMed Central  Google Scholar 

  • Caforio A, Driessen AJ (2016) Archaeal phospholipids: structural properties and biosynthesis. Biochim Biophys Acta 1862:1325–1339

    Article  PubMed  Google Scholar 

  • Calegari-Santos R, Diogo RA, Fontana JD, Bonfim TM (2016) Carotenoid production by halophilic archaea under different culture conditions. Curr Microbiol 72:641–651

    Article  CAS  PubMed  Google Scholar 

  • Chen L, Brügger K, Skovgaard M, Redder P, She Q, Torarinsson E, Greve B, Awayez M, Zibat A, Klenk HP, Garrett RA (2005) The genome of Sulfolobus acidocaldarius, a model organism of the Crenarchaeota. J Bacteriol 187:4992–4999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chirac C, Casadevall E, Largeau C, Metzger P (1985) Bacterial influence upon growth and hydrocarbon production of the green alga Botryococcus braunii. J Phycol 21:380–387

    Article  CAS  Google Scholar 

  • De Rosa M, Gambacorta A, Gliozzi A (1986) Structure, biosynthesis, and physicochemical properties of archaebacterial lipids. Microbiol Rev 50:70–80

    PubMed  PubMed Central  Google Scholar 

  • Dogbo O, Laferrière A, d’Harlingue A, Camara B (1988) Carotenoid biosynthesis: isolation and characterization of a bifunctional enzyme catalyzing the synthesis of phytoene. Proc Natl Acad Sci USA 85:7054–7058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fukui T, Atomi H, Kanai T, Matsumi R, Fujiwara S, Imanaka T (2005) Complete genome sequence of the hyperthermophilic archaeon Thermococcus kodakaraensis KOD1 and comparison with Pyrococcus genomes. Genome Res 15:352–363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gambacorta A, Gliozzi A, De Rosa M (1995) Archaeal lipids and their biotechnological applications. World J Microbiol Biotechnol 11:115–131

    Article  CAS  PubMed  Google Scholar 

  • Ghimire GP, Lee HC, Sohng JK (2009) Improved squalene production via modulation of the methylerythritol 4-phosphate pathway and heterologous expression of genes from Streptomyces peucetius ATCC 27952 in Escherichia coli. Appl Environ Microbiol 75:7291–7293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Glasemacher J, Bock AK, Schmid R, Schönheit P (1997) Purification and properties of acetyl-CoA synthetase (ADP-forming), an archaeal enzyme of acetate formation and ATP synthesis, from the hyperthermophile Pyrococcus furiosus. Eur J Biochem 244:561–567

    Article  CAS  PubMed  Google Scholar 

  • Gómez PI, Inostroza I, Pizarro M, Pérez J (2013) From genetic improvement to commercial-scale mass culture of a Chilean strain of the green microalga Haematococcus pluvialis with enhanced productivity of the red ketocarotenoid astaxanthin. AoB Plants 5:plt026

    Article  PubMed  PubMed Central  Google Scholar 

  • Hemmi H, Ikejiri S, Nakayama T, Nishino T (2003) Fusion-type lycopene β-cyclase from a thermoacidophilic archaeon Sulfolobus solfataricus. Biochem Biophys Res Commun 305:586–591

    Article  CAS  PubMed  Google Scholar 

  • Hillen LW, Pollard G, Wake LV, White N (1982) Hydrocracking of the oils of Botryococcus braunii to transport fuels. Biotechnol Bioeng 24:193–205

    Article  CAS  PubMed  Google Scholar 

  • Kaya K, Nakazawa A, Matsuura H, Honda D, Inouye I, Watanabe MM (2011) Thraustochytrid Aurantiochytrium sp. 18W-13a accumulates high amounts of squalene. Biosci Biotechnol Biochem 75:2246–2248

    Article  CAS  PubMed  Google Scholar 

  • Keller MW, Lipscomb GL, Loder AJ, Schut GJ, Kelly RM, Adams MW (2015) A hybrid synthetic pathway for butanol production by a hyperthermophilic microbe. Metab Eng 27:101–106

    Article  CAS  PubMed  Google Scholar 

  • Kelly M, Norgard S, Liaaen-Jensen S (1970) Bacterial carotenoids. XXXI. C50-carotenoids 5. Carotenoids of Halobacterium salinarium, especially bacterioruberin. Acta Chem Scand 24:2169–2182

    Article  CAS  PubMed  Google Scholar 

  • Kita K, Okada S, Sekino H, Imou K, Yokoyama S, Amano T (2010) Thermal pre-treatment of wet microalgae harvest for efficient hydrocarbon recovery. Appl Energy 87:2420–2423

    Article  CAS  Google Scholar 

  • Kull RD, Pfander H (1997) Isolation and structure elucidation of carotenid glycosides from the thermoacidophilic archaea Sulfolobus shibatae. J Nat Prod 60:371–374

    Article  CAS  Google Scholar 

  • Leavell MD, McPhee DJ, Paddon CJ (2016) Developing fermentative terpenoid production for commercial usage. Curr Opin Biotechnol 37:114–119

    Article  CAS  PubMed  Google Scholar 

  • Lee S, Poulter CD (2008) Cloning, solubilization, and characterization of squalene synthase from Thermosynechococcus elongatus BP-1. J Bacteriol 190:3808–3816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Linnewiel-Hermoni K, Khanin M, Danilenko M, Zango G, Amosi Y, Levy J, Sharoni Y (2015) The anti-cancer effects of carotenoids and other phytonutrients resides in their combined activity. Arch Biochem Biophys 572:28–35

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Han J, Liu X, Zhou J, Xiang H (2011) Development of pyrF-based gene knockout systems for genome-wide manipulation of the archaea Haloferax mediterranei and Haloarcula hispanica. J Genet Genom 38:261–269

    Article  CAS  Google Scholar 

  • Lorenz RT, Cysewski GR (2000) Commercial potential for Haematococcus microalgae as a natural source of astaxanthin. Trends Biotechnol 18:160–167

    Article  CAS  PubMed  Google Scholar 

  • Lyu Z, Jain R, Smith P, Fetchko T, Yan Y, Whitman WB (2016) Engineering the autotroph Methanococcus maripaludis for geraniol production. ACS Synth Biol 5:577–581

    Article  CAS  PubMed  Google Scholar 

  • Mai X, Adams MW (1996) Purification and characterization of two reversible and ADP-dependent acetyl coenzyme A synthetases from the hyperthermophilic archaeon Pyrococcus furiosus. J Bacteriol 178:5897–5903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsumi R, Manabe K, Fukui T, Atomi H, Imanaka T (2007) Disruption of a sugar transporter gene cluster in a hyperthermophilic archaeon using a host-marker system based on antibiotic resistance. J Bacteriol 189:2683–2691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsumi R, Atomi H, Driessen AJ, van der Oost J (2011) Isoprenoid biosynthesis in Archaea—biochemical and evolutionary implications. Res Microbiol 162:39–52

    Article  CAS  PubMed  Google Scholar 

  • Morikawa M, Izawa Y, Rashid N, Hoaki T, Imanaka T (1994) Purification and characterization of a thermostable thiol protease from a newly isolated hyperthermophilic Pyrococcus sp. Appl Environ Microbiol 60:4559–4566

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mueller M, Takemasa R, Schwarz A, Atomi H, Nidetzky B (2009) “Short-chain” α-1,4-glucan phosphorylase having a truncated N-terminal domain: functional expression and characterization of the enzyme from Sulfolobus solfataricus. Biochim Biophys Acta 1794:1709–1714

    Article  CAS  PubMed  Google Scholar 

  • Nakazawa A, Matsuura H, Kose R, Kato S, Honda D, Inouye I, Kaya K, Watanabe MM (2012) Optimization of culture conditions of the thraustochytrid Aurantiochytrium sp. strain 18W-13a for squalene production. Bioresour Technol 109:287–291

    Article  CAS  PubMed  Google Scholar 

  • Naziri E, Mantzouridou F, Tsimidou MZ (2011) Enhanced squalene production by wild-type Saccharomyces cerevisiae strains using safe chemical means. J Agric Food Chem 59:9980–9989

    Article  CAS  PubMed  Google Scholar 

  • Niehaus TD, Kinison S, Okada S, Yeo YS, Bell SA, Cui P, Devarenne TP, Chappell J (2012) Functional identification of triterpene methyltransferases from Botryococcus braunii race B. J Biol Chem 287:8163–8173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pandit J, Danley DE, Schulte GK, Mazzalupo S, Pauly TA, Hayward CM, Hamanaka ES, Thompson JF, Harwood HJ Jr (2000) Crystal structure of human squalene synthase. A key enzyme in cholesterol biosynthesis. J Biol Chem 275:30610–30617

    Article  CAS  PubMed  Google Scholar 

  • Peck RF, Johnson EA, Krebs MP (2002) Identification of a lycopene β-cyclase required for bacteriorhodopsin biogenesis in the archaeon Halobacterium salinarum. J Bacteriol 184:2889–2897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pollmann H, Breitenbach J, Sandmann G (2017) Development of Xanthophyllomyces dendrorhous as a production system for the colorless carotene phytoene. J Biotechnol 247:34–41

    Article  CAS  PubMed  Google Scholar 

  • Riboli E, Norat T (2003) Epidemiologic evidence of the protective effect of fruit and vegetables on cancer risk. Am J Clin Nutr 78:559S–569S

    Article  CAS  PubMed  Google Scholar 

  • Robb FT, Place AR (1995) Media for thermophiles. In: Robb FT, Place AR (eds) Archea: a laboratory manual-thermophiles. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 167–168

    Google Scholar 

  • Santangelo TJ, Čuboňová L, Reeve JN (2008) Shuttle vector expression in Thermococcus kodakaraensis: contributions of cis elements to protein synthesis in a hyperthermophilic archaeon. Appl Environ Microbiol 74:3099–3104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Santangelo TJ, Čuboňová L, Reeve JN (2010) Thermococcus kodakarensis genetics: TK1827-encoded β-glycosidase, new positive-selection protocol, and targeted and repetitive deletion technology. Appl Environ Microbiol 76:1044–1052

    Article  CAS  PubMed  Google Scholar 

  • Sato T, Fukui T, Atomi H, Imanaka T (2003) Targeted gene disruption by homologous recombination in the hyperthermophilic archaeon Thermococcus kodakaraensis KOD1. J Bacteriol 185:210–220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sato T, Fukui T, Atomi H, Imanaka T (2005) Improved and versatile transformation system allowing multiple genetic manipulations of the hyperthermophilic archaeon Thermococcus kodakaraensis. Appl Environ Microbiol 71:3889–3899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • She Q, Singh RK, Confalonieri F, Zivanovic Y, Allard G, Awayez MJ, Chan-Weiher CC, Clausen IG, Curtis BA, De Moors A, Erauso G, Fletcher C, Gordon PM, Heikamp-de Jong I, Jeffries AC, Kozera CJ, Medina N, Peng X, Thi-Ngoc HP, Redder P, Schenk ME, Theriault C, Tolstrup N, Charlebois RL, Doolittle WF, Duguet M, Gaasterland T, Garrett RA, Ragan MA, Sensen CW, Van der Oost J (2001) The complete genome of the crenarchaeon Sulfolobus solfataricus P2. Proc Natl Acad Sci USA 98:7835–7840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shikata K, Fukui T, Atomi H, Imanaka T (2007) A novel ADP-forming succinyl-CoA synthetase in Thermococcus kodakaraensis structurally related to the archaeal nucleoside diphosphate-forming acetyl-CoA synthetases. J Biol Chem 282:26963–26970

    Article  CAS  PubMed  Google Scholar 

  • Thorgersen MP, Lipscomb GL, Schut GJ, Kelly RM, Adams MW (2014) Deletion of acetyl-CoA synthetases I and II increases production of 3-hydroxypropionate by the metabolically-engineered hyperthermophile Pyrococcus furiosus. Metab Eng 22:83–88

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Yatsunami R, Ando A, Miyoko N, Fukui T, Takaichi S, Nakamura S (2015) Complete biosynthetic pathway of the C50 carotenoid bacterioruberin from lycopene in the extremely halophilic archaeon Haloarcula japonica. J Bacteriol 197:1614–1623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yatsunami R, Ando A, Yang Y, Takaichi S, Kohno M, Matsumura Y, Ikeda H, Fukui T, Nakasone K, Fujita N, Sekine M, Takashina T, Nakamura S (2014) Identification of carotenoids from the extremely halophilic archaeon Haloarcula japonica. Front Microbiol 5:100

    Article  PubMed  PubMed Central  Google Scholar 

  • Yokooji Y, Tomita H, Atomi H, Imanaka T (2009) Pantoate kinase and phosphopantothenate synthetase, two novel enzymes necessary for CoA biosynthesis in the Archaea. J Biol Chem 284:28137–28145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yokooji Y, Sato T, Fujiwara S, Imanaka T, Atomi H (2013) Genetic examination of initial amino acid oxidation and glutamate catabolism in the hyperthermophilic archaeon Thermococcus kodakarensis. J Bacteriol 195:1940–1948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Ms. Karin Nishimura for LC–MS analysis and to Ms. Rikako Fujimoto for constructing the expression plasmid in T. kodakarensis, pPcsgChiA1. This study was funded by the Core Research for Evolutional Science and Technology program of the Japan Science and Technology Agency to H.A. within the research area ‘Creation of Basic Technology for Improved Bioenergy Production through Functional Analysis and Regulation of Algae and Other Aquatic Microorganisms’.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haruyuki Atomi.

Additional information

Communicated by A. Driessen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 250 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fuke, T., Sato, T., Jha, S. et al. Phytoene production utilizing the isoprenoid biosynthesis capacity of Thermococcus kodakarensis. Extremophiles 22, 301–313 (2018). https://doi.org/10.1007/s00792-018-0998-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-018-0998-7

Keywords

Navigation