Skip to main content
Log in

A comparative physiological and transcriptional study of carotenoid biosynthesis in white and red grapefruit (Citrus paradisi Macf.)

  • Original Paper
  • Published:
Tree Genetics & Genomes Aims and scope Submit manuscript

Abstract

Accumulation of lycopene in citrus fruits is an unusual feature restricted to selected mutants. Grapefruit (Citrus paradisi Macf.) is the Citrus specie with greater number of red-fleshed mutants, but the molecular bases of this alteration are not fully understood. To gain knowledge into the mechanisms implicated in this alteration, we conducted a comparative analysis of carotenoid profile and of the expression of genes related to carotenoid biosynthesis and catabolism in flavedo and pulp of two grapefruit cultivars with marked differences in colouration: the white Marsh and the red Star Ruby. Mature green fruit of Marsh accumulated chloroplastic carotenoids, while mature tissues lacked carotenoids. However, accumulation of downstream products such as abscisic acid (ABA) and expression of its biosynthetic genes, 9-cis-epoxycarotenoid dioxygenase (NCED1 and NCED2), increased after the onset of colouration. In contrast, red grapefruit accumulated lycopene, phytoene and phytofluene, while ABA content and NCED gene expression were lower than in Marsh, suggesting a blockage in the carotenoid biosynthetic pathway. Expression analysis of three genes of the isoprenoid pathway and nine of the carotenoid biosynthetic pathway revealed virtually no differences in flavedo and pulp between both genotypes, except for the chromoplast-specific lycopene cyclase 2 (β-LCY2) which was lower in the pulp of the red grapefruit. The proportion in the expression of the allele with high (β-LCY2a) and low (β-LCY2b) activity was also similar in the pulp of both genotypes. Therefore, results suggest that reduced expression of β-LCY2 appears to be responsible of lycopene accumulation in the red Star Ruby grapefruit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Alós E, Cercós M, Rodrigo MJ, Zacarías L, Talón M (2006) Regulation of color break in citrus fruits. Changes in pigment profiling and gene expression induced by gibberellins and nitrate, two ripening retardants. J Agric Food Chem 54:4888–4895

    Article  PubMed  Google Scholar 

  • Alquezar B, Rodrigo MJ, Zacarías L (2008a) Carotenoid biosynthesis and their regulation in citrus fruits. Tree and Forestry Science and Biotechnology 2:23–35

    Google Scholar 

  • Alquezar B, Rodrigo MJ, Zacarias L (2008b) Regulation of carotenoid biosynthesis during fruit maturation in the red-fleshed orange mutant Cara Cara. Phytochem 69:1997–2007

    Article  CAS  Google Scholar 

  • Alquezar B, Zacarias L, Rodrigo MJ (2009) Molecular and functional characterization of a novel chromoplast-specific lycopene β-cyclase from Citrus and its relation to lycopene accumulation. J Exp Bot 60:1783–1797

    Article  CAS  PubMed  Google Scholar 

  • Aung LH, Houck LG, Norman SM (1991) The abscisic acid content in Citrus with special reference to lemons. J Exp Bot 42:1083–1088

    Article  CAS  Google Scholar 

  • Ballester AR, Lafuente MT, Gonzalez-Candelas L (2006) Spatial study of antioxidant enzymes, peroxidase and phenylalanine ammonia-lyase in the citrus fruit–Penicillium digitatum interaction. Postharvest Biol and Technol 39:115–124

    Article  CAS  Google Scholar 

  • Banet E, Romojaro F, Llorente S (1981) Evolucion de pigmentos fotosinteticos en flavedo y pulpa de pomelo Marsh. Anales de Edafologia y Agrobiologia 40:259–267

    CAS  Google Scholar 

  • Brandi F, Bar E, Mourgues F, Horvath G, Turcsi E, Giuliano G, Liverani A, Tartarini S, Lewinsohn E, Rosati C (2011) Study of 'Redhaven' peach and its white-fleshed mutant suggests a key role of CCD4 carotenoid dioxygenase in carotenoid and norisoprenoid volatile metabolism. BMC Plant Biol 11:24

    Article  CAS  PubMed  Google Scholar 

  • Chen C, Costa MCG, Yu Q, Moore GA, Gmitter FG Jr (2010) Identification of novel members in sweet orange carotenoid biosynthesis gene families. Tree Genetics and Genomes 6:905–914

    Article  Google Scholar 

  • Corazza Nunes MJ, Machado MA, Nunes WMC, Cristofani M, Targon MLPN (2002) Assessment of genetic variability in grapefruits (Citrus paradisi Macf.) and pummelos (C. maxima (Burm.) Merr.) using RAPD and SSR markers. Euphytica 126:169–176

    Article  CAS  Google Scholar 

  • Costa M, Moreira C, Melton J, Otoni W, Moore G (2011) Characterization and developmental expression of genes encoding the early carotenoid biosynthetic enzymes in Citrus paradisi. Mol Biol Rep 39:1–8

    Google Scholar 

  • Curl AL, Bailey GF (1957) The carotenoids of Ruby Red grapefruit. Food Res 22:63–68

    Article  CAS  Google Scholar 

  • Davies BH (1976) Carotenoids. In: Goodwin TW (ed). Chemistry and biochemistry of plant pigments, Vol.II. Academic Press, New York, pp 38-165

  • Fanciullino AL, Cercós M, Dhuique Mayer C, Froelicher Y, Talón M, Ollitrault P, Morillon R (2008) Changes in carotenoid content and biosynthetic gene expression in juice sacs of four orange varieties (Citrus sinensis) differing in flesh fruit color. J Agric Food Chem 56:3628–3638

    Article  CAS  PubMed  Google Scholar 

  • Fanciullino AL, Dhuique Mayer C, Luro F, Casanova J, Morillon R, Ollitrault P (2006) Carotenoid diversity in cultivated citrus is highly influenced by genetic factors. J Agric Food Chem 54:4397–4406

    Google Scholar 

  • Garcia-Lor A, Curk F, Snoussi-Trifa H, Morillon R, Ancillo G, Luro F, Navarro L, Ollitrault P (2013) A nuclear phylogenetic analysis: SNPs, indels and SSRs deliver new insights into the relationships in the 'citrus fruit trees' group (Citrinae, Rutaceae) and the origin of cultivated species. Ann Bot 111:1–19

    Article  CAS  PubMed  Google Scholar 

  • Gmitter FG (1995) Origin, evolution and breeding of the grapefruit. Plant Breed Rev 13:345–363

    Google Scholar 

  • Gmitter FG Jr, Chen CX, Machado MA, de Souza AA, Ollitrault P, Froehlicher Y, Shimizu T (2012) Citrus genomics. Tree Genet Genomes 8:611–626

    Article  Google Scholar 

  • Gross J (1987) Pigments in fruits. Academic Press, London

    Google Scholar 

  • Kato M (2012) Mechanism of carotenoid accumulation in Citrus fruits. J Japan Hort Sci 81:219–233

    Article  CAS  Google Scholar 

  • Kato M, Ikoma Y, Matsumoto H, Sugiura M, Hyodo H, Yano M (2004) Accumulation of carotenoids and expression of carotenoid biosynthetic genes during maturation in citrus fruit. Plant Physiol 134:824–837

    Article  CAS  PubMed  Google Scholar 

  • Kato M, Matsumoto H, Ikoma Y, Okuda H, Yano M (2006) The role of carotenoid cleavage dioxygenases in the regulation of carotenoid profiles during maturation in citrus fruit. J Exp Bot 57:2153–2164

    Article  CAS  PubMed  Google Scholar 

  • Khan M, Mackinney G (1953) Carotenoids in grapefruit, Citrus paradisi. Plant Physiol 28:550–552

    Article  CAS  PubMed  Google Scholar 

  • Ladaniya MS (2008) Fruit biochemistry. In: Ladaniya MS (ed) Citrus fruits: biology, technology and evaluation. Academic Press, San Diego, pp 125–190

    Chapter  Google Scholar 

  • Lafuente MT, Martinez Tellez MA, Zacarías L (1997) Abscisic acid in the response of 'Fortune' mandarins to chilling. Effect of maturity and high-temperature conditioning. J Sci Food Agric 73:494–502

    Article  CAS  Google Scholar 

  • Lee HS (2001) Characterization of carotenoids in juice of red navel orange (Cara Cara). J Agric Food Chem 49:2563–2568

    Article  CAS  PubMed  Google Scholar 

  • Li L, Lu S, Cosman KM, Earle ED, Garvin DF, O’Neill J (2006) β-Carotene accumulation induced by the cauliflower Or gene is not due to an increased capacity of biosynthesis. Phytochem 67:1177–1184

    Article  CAS  Google Scholar 

  • Liu Q, Xu J, Liu Y, Zhao X, Deng X, Guo L, Gu J (2007) A novel bud mutation that confers abnormal patterns of lycopene accumulation in sweet orange fruit (Citrus sinensis L. Osbeck). J Exp Bot 58:4161–4171

    Article  CAS  PubMed  Google Scholar 

  • Lu S, Van Eck J, Zhou X, Lopez AB, O’Halloran DM, Cosman KM, Conlin BJ, Paolillo DJ, Garvin DF, Vrebalov J, Kochian LV, Kupper H, Earle ED, Cao J, Li L (2006) The cauliflower Or gene encodes a DnaJ cysteine-rich domain-containing protein that mediates high levels of β-carotene accumulation. Plant Cell 18:3594–3605

    Article  CAS  PubMed  Google Scholar 

  • Matlack MB (1935) Pigments of pink Grapefruit, Citrus grandis (L., Osbeck). J Biol Chem 110:249–253

    CAS  Google Scholar 

  • Matsumoto H, Ikoma Y, Kato M, Kuniga T, Nakajima N, Yoshida T (2007) Quantification of carotenoids in Citrus fruit by LC-MS and comparison of patterns of seasonal changes for carotenoids among Citrus varieties. J Agric Food Chem 55:2356–2368

    Article  CAS  PubMed  Google Scholar 

  • Matsumoto H, Ikoma Y, Kato M, Nakajima N, Hasegawa Y (2009) Effect of postharvest temperature and ethylene on carotenoid accumulation in the flavedo and juice sacs of 'Satsuma' mandarin (Citrus unshiu Marc.) fruit. J Agric Food Chem 57:4724–4732

    Article  CAS  PubMed  Google Scholar 

  • Mendes AFS, Chen C, Gmitter FG, Moore GA, Costa MGC (2011) Expression and phylogenetic analysis of two new lycopene β-cyclases from Citrus paradisi. Physiol Plant 141:1–10

    Article  CAS  PubMed  Google Scholar 

  • Monselise SP, Halevy AH (1961) Detection of lycopene in pink orange fruit. Science 133:1478

    Article  CAS  PubMed  Google Scholar 

  • Nicolosi E, Deng ZN, Gentile A, La Malfa S, Continella G, Tribulato E (2000) Citrus phylogeny and genetic origin of important species as investigated by molecular markers. Theor Appl Genet 100:1155–1166

    Article  CAS  Google Scholar 

  • Ohmiya A, Kishimoto S, Aida R, Yoshioka S, Sumitomo K (2006) Carotenoid cleavage dioxygenase (CmCCD4a) contributes to white color formation in Chrysanthemum petals. Plant Physiol 142:1193–1201

    Google Scholar 

  • Pascual M, Mallent MD, Cuñat P (1993) Estudio de los carotenoids de naranjas Navelina. Rev Española de Ciencia y Tecnologia de Alimentos 33:179–196

    CAS  Google Scholar 

  • Pfaffl MW, Horgan GW, Dempfle L (2002) Relative expression software tool (REST-®) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucl Acids Res 30:e36

    Article  PubMed  Google Scholar 

  • Rao A, Rao LG (2007) Carotenoids and human health. Pharmacol Res 55:207–216

    Article  CAS  PubMed  Google Scholar 

  • Rodrigo MJ, Alquézar B, Zacarías L (2006) Cloning and characterization of two 9-cis-epoxycarotenoid dioxygenase genes, differentially regulated during fruit maturation and under stress conditions, from orange (Citrus sinensis L. Osbeck). J Exp Bot 57:633–643

    Article  CAS  PubMed  Google Scholar 

  • Rodrigo MJ, Marcos JF, Alférez F, Mallent MD, Zacarías L (2003) Characterization of Pinalate, a novel Citrus sinensis mutant with a fruit-specific alteration that results in yellow pigmentation and decreased ABA content. J Exp Bot 54:727–738

    Article  CAS  PubMed  Google Scholar 

  • Rodrigo MJ, Marcos JF, Zacarías L (2004) Biochemical and molecular analysis of carotenoid biosynthesis in flavedo of orange (Citrus sinensis L.) during fruit development and maturation. J Agric Food Chem 52:6724–6731

    Article  CAS  PubMed  Google Scholar 

  • Rodrigo MJ, Zacarías L (2006) Effect of postharvest ethylene treatment on carotenoid accumulation and the expression of carotenoid biosynthetic genes in the flavedo of orange (Citrus sinensis L. Osbeck) fruit. Postharvest Biol Technol 43:14–22

    Article  Google Scholar 

  • Romero P, Lafuente MT, Rodrigo MJ (2012) The Citrus ABA signalosome: identification and transcriptional regulation during sweet orange fruit ripening and leaf dehydration. J Exp Bot 63:4931–4945

    Article  CAS  PubMed  Google Scholar 

  • Romojaro F, Banet E, Llorente S (1979) Carotenoids in both flavedo and pulp of Marsh seedless grapefruit. Revista de Agroquimica y Tecnologia de Alimentos 19:385–392

    CAS  Google Scholar 

  • Saunt J (2000) Citrus varieties of the world. Sinclair International Limited, Norwich, pp 16–17

    Google Scholar 

  • Stewart I, Wheaton TA (1972) Carotenoids in citrus—their accumulation induced by ethylene. J Agric Food Chem 20:448–449

    Article  CAS  Google Scholar 

  • Ting SV, Deszyck EJ (1958) The internal color and carotenoid pigments of Florida red and pink grapefruit. J Amer Soc Hort Sci 71:271–277

    CAS  Google Scholar 

  • Tomes ML, Quackenbuss FW, Kargill TE (1956) Carotenoid synthesis in Citrus. Bot Gaz 117:1721–1724

    Article  Google Scholar 

  • Xu CJ, Fraser PD, Wang WJ, Bramley P (2006a) Differences in the carotenoid content of ordinary citrus and lycopene-accumulating mutants. J Agric Food Chem 54:5474–5481

    Article  CAS  PubMed  Google Scholar 

  • Xu J, Tao NG, Liu Q, Deng XX (2006b) Presence of diverse ratios of lycopene/β-carotene in five pink or red-fleshed citrus cultivars. Sci Hortic 108:181–184

    Article  CAS  Google Scholar 

  • Yokoyama H, Debenidi C, Coggins CW, Henning GL (1972) Chemical regulation of carotenoid biosynthesis. 3. Induced color changes in grapefruit and orange. Phytochem 11:1721–1724

    Article  CAS  Google Scholar 

  • Yokoyama H, White MJ (1967) Carotenoids in the flavedo of Marsh seedless grapefruit. J Agric Food Chem 15:693–696

    Article  CAS  Google Scholar 

  • Yu K, Xu Q, Da X, Guo F, Ding Y, Deng X (2012) Transcriptome changes during fruit development and ripening of sweet orange (Citrus sinensis). BMC Genomics 13:10

    Article  CAS  PubMed  Google Scholar 

  • Zacarias L, Talon M, Ben C, Lafuente MT, Primo-Millo E (1995) Abscisic acid increases in non-growing and paclobutrazol-treated fruits of seedless mandarins. Physiol Plant 95:613–619

    Article  CAS  Google Scholar 

  • Zhang L, Ma G, Shirai Y, Kato M, Yamawaki K, Ikoma Y, Matsumoto H (2012) Expression and functional analysis of two lycopene β-cyclases from citrus fruits. Planta 236:1315–1325

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We acknowledge Dr. L. Gonzalez-Candelas (IATA-CSIC, Valencia) for providing the plasmids with MEP probes. We thank Dr. L. Navarro (IVIA, Moncada, Valencia) for the use of the Citrus Germplasm Bank. The technical assistance of Amparo Beneyto is gratefully acknowledged. This work has been supported by research grants AGL2009-11558 and AGL-2012-34573 (Ministerio de Ciencia e Innovación and Economia y Competitividad, Spain). Joanna Lado is the recipient of a JAE-pre-fellowship from CSIC (Fondo Social Europeo). Financial support by PROMETEO2010/010 (Generalitat Valenciana) and Fun-C-Food (CSD2007-0063C, Ministerio de Ciencia e Innovación) is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lorenzo Zacarías.

Additional information

Communicated by W.-W. Guo

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alquezar, B., Rodrigo, M.J., Lado, J. et al. A comparative physiological and transcriptional study of carotenoid biosynthesis in white and red grapefruit (Citrus paradisi Macf.). Tree Genetics & Genomes 9, 1257–1269 (2013). https://doi.org/10.1007/s11295-013-0635-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11295-013-0635-7

Keywords

Navigation