Skip to main content

Advertisement

SpringerLink
Chlorophyll fluorescence emission spectroscopy of oxygenic organisms at 77 K
Download PDF
Download PDF
  • Review
  • Open Access
  • Published: 08 February 2018

Chlorophyll fluorescence emission spectroscopy of oxygenic organisms at 77 K

  • J. J. Lamb1,
  • G. Røkke2 &
  • M. F. Hohmann-Marriott2 

Photosynthetica volume 56, pages 105–124 (2018)Cite this article

  • 6951 Accesses

  • 41 Citations

  • Metrics details

Abstract

Photosynthetic fluorescence emission spectra measurement at the temperature of 77 K (–196°C) is an often-used technique in photosynthesis research. At low temperature, biochemical and physiological processes that modulate fluorescence are mostly abolished, and the fluorescence emission of both PSI and PSII become easily distinguishable. Here we briefly review the history of low-temperature chlorophyll fluorescence methods and the characteristics of the acquired emission spectra in oxygen-producing organisms. We discuss the contribution of different photosynthetic complexes and physiological processes to fluorescence emission at 77 K in cyanobacteria, green algae, heterokont algae, and plants. Furthermore, we describe practical aspects for obtaining and presenting 77 K fluorescence spectra.

Download to read the full article text

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

Abbreviations

Chl:

chlorophyll

LHC:

light-harvesting complex

PSI:

photosystem I

PSII:

photosystem II

References

  • Alboresi A., Le Quiniou C., Yadav S.K.N. et al.: Conservation of core complex subunits shaped the structure and function of photosystem I in the secondary endosymbiont alga Nannochloropsis gaditana.–New Phytol. 213: 714–726, 2017.

    Article  PubMed  CAS  Google Scholar 

  • Allen J.F.: Protein phosphorylation in regulation of photosynthesis.–BBA-Bioenergetics 1098: 275–335, 1992.

    Article  PubMed  CAS  Google Scholar 

  • Andrizhiyevskaya E.G., Chojnicka A., Bautista J.A. et al.: Origin of the F685 and F695 fluorescence in photosystem II.–Photosynth. Res. 84: 173–180, 2005.

    Article  PubMed  CAS  Google Scholar 

  • Ben-Shem A., Frolow F., Nelson N.: Crystal structure of plant photosystem I.–Nature 426: 630–635, 2003.

    Article  PubMed  CAS  Google Scholar 

  • Berkaloff C., Caron L., Rousseau B.: Subunit organization of PSI particles from brown algae and diatoms: polypeptide and pigment analysis.–Photosynth. Res. 23: 181–193, 1990.

    Article  PubMed  CAS  Google Scholar 

  • Bibby T.S., Nield J., Barber J.: Iron deficiency induces the formation of an antenna ring around trimeric photosystem I in cyanobacteria.–Nature 412: 743–745, 2001a.

    Article  PubMed  CAS  Google Scholar 

  • Bibby T.S., Nield J., Barber J.: Three-dimensional model and characterization of the iron stress-induced CP43′-photosystem I supercomplex isolated from the cyanobacterium Synechocystis PCC 6803.–J. Biol. Chem. 276: 43246–43252, 2001b.

    Article  PubMed  CAS  Google Scholar 

  • Biggins J., Bruce D.: Regulation of excitation energy transfer in organisms containing phycobilins.–Photosynth. Res. 20: 1–34, 1989.

    Article  PubMed  CAS  Google Scholar 

  • Bína D., Gardian Z., Herbstová M., Litvín R.: Modular antenna of photosystem I in secondary plastids of red algal origin: a Nannochloropsis oceanica case study.–Photosynth. Res. 131: 255–266, 2017.

    Article  PubMed  CAS  Google Scholar 

  • Björkman O., Demmig B.: Photon yield of O2 evolution and chlorophyll fluorescence characteristics at 77 K among vascular plants of diverse origins.–Planta 170: 489–504, 1987.

    Article  PubMed  Google Scholar 

  • Boardman N., Thorne S., Anderson J.: Fluorescence properties of particles obtained by digitonin fragmentation of spinach chloroplasts.–P. Natl. Acad. Sci. USA 56: 586–593, 1966.

    Article  CAS  Google Scholar 

  • Boehm M., Romero E., Reisinger V. et al.: Investigating the early stages of Photosystem II assembly in Synechocystis sp. PCC 6803 isolation of CP47 and CP43 complexes.–J. Biol. Chem. 286: 14812–14819, 2011.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Boehm M., Yu J., Reisinger V. et al.: Subunit composition of CP43-less photosystem II complexes of Synechocystis sp. PCC 6803: implications for the assembly and repair of photosystem II.–Philos. T. R. Soc. B 367: 3444–3454, 2012.

    Article  CAS  Google Scholar 

  • Boekema E.J., Dekker J.P., van Heel M.G. et al.: Evidence for a trimeric organization of the photosystem I complex from the thermophilic cyanobacterium Synechococcus sp.–FEBS Lett. 217: 283–286, 1987.

    Article  CAS  Google Scholar 

  • Boekema E.J., Hifney A., Yakushevska A.E., Piotrowski M.: A giant chlorophyll-protein complex induced by iron deficiency in cyanobacteria.–Nature 412: 745–758, 2001.

    Article  PubMed  CAS  Google Scholar 

  • Bonaventura C., Myers J.: Fluorescence and oxygen evolution from Chlorella pyrenoidosa.–BBA-Bioenergetics 189: 366–383, 1969.

    Article  PubMed  CAS  Google Scholar 

  • Brewster D.: On the colours of natural bodies.–Earth Env. Sci. T. R. So. 12: 538–545, 1834.

    Google Scholar 

  • Brody S.: New excited state of chlorophyll.–Science 128: 838–839, 1958.

    Article  PubMed  CAS  Google Scholar 

  • Burnap R.L., Troyan T., Sherman L.A.: The highly abundant chlorophyll-protein complex of iron-deficient Synechococcus sp. PCC7942 (CP43 [prime]) is encoded by the isiA gene.–Plant Physiol. 103: 893–902, 1993.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Busch A., Nield J., Hippler M.: The composition and structure of photosystem Iassociated antenna from Cyanidioschyzon merolae.–Plant J. 62: 886–897, 2010.

    Article  PubMed  CAS  Google Scholar 

  • Butler W.L.: Chlorophyll fluorescence: a probe for electron transfer and energy transfer.–In: Trebst A., Avron M. (ed.): Photosynthesis I. Pp. 149–167. Springer, Berlin–Heidelberg 1977.

    Chapter  Google Scholar 

  • Cardona T.: Reconstructing the origin of oxygenic photosynthesis: Do assembly and photoactivation recapitulate evolution?–Front. Plant Sci. 7: 257, 2016.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cavalier Smith T.O.M.: Principles of protein and lipid targeting in secondary symbiogenesis: euglenoid, dinoflagellate, and sporozoan plastid origins and the eukaryote family tree.–J. Eukaryot. Microbiol. 46: 347–366, 1999.

    Article  PubMed  CAS  Google Scholar 

  • Chen M., Blankenship R.E.: Expanding the solar spectrum used by photosynthesis.–Trends Plant Sci. 16: 427–431, 2011.

    Article  PubMed  CAS  Google Scholar 

  • Chen M., Li Y., Birch D., Willows R.D.: A cyanobacterium that contains chlorophyll f–a redabsorbing photopigment.–FEBS Lett. 586: 3249–3254, 2012.

    Article  PubMed  CAS  Google Scholar 

  • Cho F., Spencer J.: Emission spectra of Chlorella at very low temperatures (−269° to −196°).–Biochim. Biophys. Acta 126: 174–176, 1966.

    Article  PubMed  CAS  Google Scholar 

  • Cho F.: Low-temperature (4–77° K) spectroscopy of Anacystis; temperature dependence of energy transfer efficiency.–BBABioenergetics 216: 151–161, 1970a.

    Article  CAS  Google Scholar 

  • Cho F.: Low-temperature (4–77° K) spectroscopy of Chlorella; temperature dependence of energy transfer efficiency.–BBABioenergetics 216: 139–150, 1970b.

    Article  CAS  Google Scholar 

  • Clayton R.K.: Photosynthesis: Physical Mechanisms and Chemical Patterns. Vol. 4. Pp. 19–35. Cambridge University Press, Cambridge 1980.

    Google Scholar 

  • Cordón G.B., Lagorio M.G.: Re-absorption of chlorophyll fluorescence in leaves revisited. A comparison of correction models.–Photochem. Photobio. S. 5: 735–740, 2006.

    Article  Google Scholar 

  • Croce R., Zucchelli G., Garlaschi F.M., Jennings R.C.: A thermal broadening study of the antenna chlorophylls in PSI-200, LHCI, and PSI core.–Biochemistry 37: 17355–17360, 1998.

    Article  PubMed  CAS  Google Scholar 

  • Dau H.: Molecular mechanisms and quantitative models of variable photosystem II fluorescence.–Photochem Photobiol 60: 1–23, 1994a.

    Article  CAS  Google Scholar 

  • Dau H.: New trends in photobiology: Short-term adaptation of plants to changing light intensities and its relation to Photosystem II photochemistry and fluorescence emission.–J. Photoch. Photobio. B 26: 3–27, 1994b.

    Article  CAS  Google Scholar 

  • de Marsac N.T.: Phycobiliproteins and phycobilisomes: the early observations.–Photosynth. Res. 76: 193–205, 2003.

    Article  Google Scholar 

  • Dekker J., Hassoldt A., Petterson A. et al.: On the nature of the F695 and F685 emission of photosystem II.–In: Mathis P. (ed.): Photosynthesis: From Light to Biosphere, Vol III. Pp. 53–56. Kluwer, Dordrecht 1995.

    Chapter  Google Scholar 

  • Dietzel L., Bräutigam K., Steiner S. et al.: Photosystem II supercomplex remodeling serves as an entry mechanism for state transitions in Arabidopsis.–Plant Cell 23: 2964–2977, 2011.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dong C., Tang A., Zhao J. et al.: ApcD is necessary for efficient energy transfer from phycobilisomes to photosystem I and helps to prevent photoinhibition in the cyanobacterium Synechococcus sp. PCC 7002.–BBA-Bioenergetics 1787: 1122–1128, 2009.

    Article  PubMed  CAS  Google Scholar 

  • Drop B., Webber-Birungi M., Yadav S.K.N. et al.: Lightharvesting complex II (LHCII) and its supramolecular organization in Chlamydomonas reinhardtii.–BBA-Bioenergetics 1837: 63–72, 2014.

    Article  PubMed  CAS  Google Scholar 

  • Duysens L., Sweers H.: Mechanism of two photochemical reactions in algae as studied by means of fluorescence.–In: Tamiya H. (ed.): Studies on Microalgae and Photosynthetic Bacteria. Pp. 353–372. University of Tokyo Press, Tokyo 1963.

    Google Scholar 

  • Eaton-Rye J.J., Sobotka R.: Assembly of the photosystem II membrane-protein complex of oxygenic photosynthesis.–Front. Plant Sci. 8: 884, 2017.

    Article  PubMed  PubMed Central  Google Scholar 

  • El Bissati K., Delphin E., Murata N. et al.: Photosystem II fluorescence quenching in the cyanobacterium Synechocystis PCC 6803: involvement of two different mechanisms.–BBABioenergetics 1457: 229–242, 2000.

    Article  CAS  Google Scholar 

  • Emerson R.: Dependence of yield of photosynthesis in long-wave red on wavelength and intensity of supplementary light.–Science 125: 746, 1957.

    Article  Google Scholar 

  • Erickson E., Wakao S., Niyogi K.K.: Light stress and photoprotection in Chlamydomonas reinhardtii.–Plant J. 82: 449–465, 2015.

    Article  PubMed  CAS  Google Scholar 

  • Falk S., Samson G., Bruce D. et al.: Functional analysis of the iron-stress induced CP 43′ polypeptide of PS II in the cyanobacterium Synechococcus sp. PCC 7942.–Photosynth. Res. 45: 51–60, 1995.

    Article  PubMed  CAS  Google Scholar 

  • Farkas D.L., Malkin S.: Cold storage of isolated class C chloroplasts optimal conditions for stabilization of photosynthetic activities.–Plant Physiol. 64: 942–947, 1979.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Förster T.: Delocalizing Excitation and Excitation Transfer. Modern Quantum Chemistry Istanbul Lectures. Pp. 93–137. Academic Press, New York 1965.

    Google Scholar 

  • Franck F., Juneau P., Popovic R.: Resolution of the photosystem I and photosystem II contributions to chlorophyll fluorescence of intact leaves at room temperature.–BBA-Bioenergetics 1556: 239–246, 2002.

    Article  PubMed  CAS  Google Scholar 

  • Frank H.A., Cua A., Chynwat V. et al.: Photophysics of the carotenoids associated with the xanthophyll cycle in photosynthesis.–Photosynth. Res. 41: 389–395, 1994.

    Article  PubMed  CAS  Google Scholar 

  • Galka P., Santabarbara S., Khuong T.T.H. et al.: Functional analyses of the plant photosystem I–light-harvesting complex II supercomplex reveal that light-harvesting complex ii loosely bound to photosystem ii is a very efficient antenna for photosystem I in state II.–Plant Cell 24: 2963–2978, 2012.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gan F., Shen G., Bryant D.A.: Occurrence of far-red light photoacclimation (FaRLiP) in diverse cyanobacteria.–Life 5: 4–24, 2015.

    Article  CAS  Google Scholar 

  • Garczarek L., van der Staay G.W.M., Thomas J.C., Partensky F.: Isolation and characterization of Photosystem I from two strains of the marine oxychlorobacterium Prochlorococcus.–Photosynth. Res. 56: 131–141, 1998.

    Article  CAS  Google Scholar 

  • Gardian Z., Bumba L., Schrofel A. et al.: Organisation of photosystem I and photosystem II in red alga Cyanidium caldarium: encounter of cyanobacterial and higher plant concepts.–BBA-Bioenergetics 1767: 725–731, 2007.

    Article  PubMed  CAS  Google Scholar 

  • Goldschmidt-Clermont M., Bassi R.: Sharing light between two photosystems: mechanism of state transitions.–Curr. Opin. Plant. Biol. 25: 71–78, 2015.

    Article  PubMed  CAS  Google Scholar 

  • Gouterman M., Wagnière G.H., Snyder L.C.: Spectra of porphyrins: Part II. Four orbital model.–J. Mol. Spectrosc. 11: 108–127, 1963.

    Article  CAS  Google Scholar 

  • Govindjee, Björn L.O.: Evolution of the Z-scheme of photosynthesis: a perspective.–Photosynth. Res. 133: 5–15, 2017.

    Article  PubMed  CAS  Google Scholar 

  • Govindjee, Ichimura S., Cederstrand C., Rabinowitch E.: Effect of combining far-red light with shorter wave light in the excitation of fluorescence in Chlorella.–Arch. Biochem. Biophys. 89: 322–323, 1960.

    Article  PubMed  CAS  Google Scholar 

  • Govindjee, Yang L.: Structure of the red fluorescence band in chloroplasts.–J. Gen. Physiol. 49: 763–780, 1966.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Govindjee: Emerson enhancement effect and two light reactions in photosynthesis.–In: Kok B., Jagendorf A.T. (ed.): Photosynthetic Mechanisms of Green Plants. Pp 318. National Academy of Science–National Research Council Publication, Washington DC 1963.

    Google Scholar 

  • Govindjee: Chlorophyll a fluorescence: a bit of basics and history.–In: Papageorgiou G.C., {ieGovindjee: Chlorophyll a Fluorescence: A Signature of Photosynthesis. Pp. 1–41. Springer, Dordrecht 2004.

    Google Scholar 

  • Govindjee: Sixty-three years since kautsky: chlorophyll a fluorescence.–Aust. J. Plant Physiol. 22: 131–160, 1995.

    Article  CAS  Google Scholar 

  • Grouneva I., Rokka A., Aro E.-M.: The thylakoid membrane proteome of two marine diatoms outlines both diatom-specific and species-specific features of the photosynthetic machinery.–J. Proteome Res. 10: 5338–5353, 2011.

    Article  PubMed  CAS  Google Scholar 

  • Gundermann K., Büchel C.: Structure and functional heterogeneity of fucoxanthin-chlorophyll proteins in diatoms.–In: Hohmann-Marriott M.F. (ed.): The Structural Basis of Biological Energy Generation. Pp. 31–27. Springer, Dordrecht 2014.

    Google Scholar 

  • Havaux M., Guedeney G., Hagemann M. et al.: The chlorophyllbinding protein IsiA is inducible by high light and protects the cyanobacterium Synechocystis PCC6803 from photooxidative stress.–FEBS Lett. 579: 2289–2293, 2005.

    Article  PubMed  CAS  Google Scholar 

  • Herbstová M., Bína D., Koník P. et al.: Molecular basis of chromatic adaptation in pennate diatom Phaeodactylum tricornutum.–BBA-Bioenergetics 1847: 534–543, 2015.

    Article  PubMed  CAS  Google Scholar 

  • Hillier W., Babcock G.T.: Photosynthetic reaction centers.–Plant Physiol. 125: 33–37, 2001.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hipkins M.F., Baker N.R.: Photosynthetic energy transduction: A practical approach.–In: Hipkins M.F., Baker N.R.: Photosynthesis: Energy Transduction, A Practical Approach. Pp 1. IRL Press, Arlington 1986.

    Google Scholar 

  • Hirsch R.E., Rich M., Govindjee: A tribute to Seymour Steven Brody: in memoriam (November 29, 1927 to May 25, 2010).–Photosynth. Res. 106: 191–199, 2010.

    Article  PubMed  CAS  Google Scholar 

  • Hofstraat J.W., Rubelowsky K., Slutter S.: Corrected fluorescence excitation and emission spectra of phytoplankton: toward a more uniform approach to fluorescence measurements.–J. Plankton. Res. 14: 625–636, 1992.

    Article  Google Scholar 

  • Hohmann-Marriott M.F., Blankenship R.E.: Evolution of photosynthesis.–Plant. Physiol. 154: 434–438, 2011.

    Google Scholar 

  • Hohmann-Marriott M.F., Takizawa K., Eaton-Rye J.J. et al.: The redox state of the plastoquinone pool directly modulates minimum chlorophyll fluorescence yield in Chlamydomonas reinhardtii.–FEBS Lett. 584: 1021–1026, 2010.

    Article  PubMed  CAS  Google Scholar 

  • Ikeda Y., Komura M., Watanabe M. et al.: Photosystem I complexes associated with fucoxanthin-chlorophyll-binding proteins from a marine centric diatom, Chaetoceros gracilis.–BBA-Bioenergetics 1777: 351–361, 2008.

    Article  PubMed  CAS  Google Scholar 

  • Irrgang K.D., Boekema E.J., Vater J., Renger G.: Structural determination of the photosystem II core complex from spinach.–FEBS J. 178: 209–217, 1988.

    CAS  Google Scholar 

  • Iwai M., Takahashi Y., Minagawa J.: Molecular remodeling of photosystem II during state transitions in Chlamydomonas reinhardtii.–Plant Cell 20: 2177–2189, 2008.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Järvi S., Suorsa M., Aro E.-M.: Photosystem II repair in plant chloroplasts–regulation, assisting proteins and shared components with photosystem II biogenesis.–BBABioenergetics 1847: 900–909, 2015.

    Article  CAS  Google Scholar 

  • Jordan P., Fromme P., Witt H.T., Klukas O.: Three-dimensional structure of cyanobacterial photosystem I at 2.5 angstrom resolution.–Nature 411: 909–917, 2001.

    Article  PubMed  CAS  Google Scholar 

  • Joshua S., Mullineaux C.W.: Phycobilisome diffusion is required for light-state transitions in cyanobacteria.–Plant Physiol. 135: 2112–2119, 2004.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Juhas M., Büchel C.: Properties of photosystem I antenna protein complexes of the diatom Cyclotella meneghiniana.–J. Exp. Bot. 63: 3673–3681, 2012.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kaňa R., Kotabová E., Lukeš M. et al.: Phycobilisome mobility and its role in the regulation of light harvesting in red algae.–Plant Physiol. 165: 1618–1631, 2014.

    Article  PubMed  PubMed Central  Google Scholar 

  • Karapetyan N.V., Bolychevtseva Y.V., Yurina N.P. et al.: Longwavelength chlorophylls in photosystem I of cyanobacteria: origin, localization, and functions.–Biochemistry 79: 213, 2014.

    PubMed  CAS  Google Scholar 

  • Kargul J., Nield J., Barber J.: Three-dimensional reconstruction of a light-harvesting complex I-photosystem I (LHCI-PSI) supercomplex from the green alga Chlamydomonas reinhardtii. Insights into light harvesting for PSI.–J. Biol. Chem. 278: 16135–16141, 2003.

    Article  PubMed  CAS  Google Scholar 

  • Kautsky H., Hirsch A.: [New attempts for carbon dioxide assimilation.]–Naturwissenschaft 19: 964–964, 1931. [In German]

    Article  CAS  Google Scholar 

  • Keeling P.J.: The number, speed, and impact of plastid endosymbioses in eukaryotic evolution.–Annu. Rev. Plant Biol. 64: 583–607, 2013.

    Article  PubMed  CAS  Google Scholar 

  • Komenda J., Sobotka R., Nixon P.J.: Assembling and maintaining the photosystem II complex in chloroplasts and cyanobacteria.–Curr. Opin. Plant Biol. 15: 245–251, 2012.

    Article  PubMed  CAS  Google Scholar 

  • Kondo K., Ochiai Y., Katayama M., Ikeuchi M.: The membraneassociated CpcG2-phycobilisome in Synechocystis: a new photosystem I antenna.–Plant Physiol. 144: 1200–1210, 2007.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Krause G.H., Briantais J.M., Vernotte C.: Characterization of chlorophyll fluorescence quenching in chloroplasts by fluorescence spectroscopy at 77 K I. ΔpH-dependent quenching.–BBA-Bioenergetics 723: 169–175, 1983.

    Article  CAS  Google Scholar 

  • Krause G.H., Weis E.: Chlorophyll fluorescence as a tool in plant physiology.–Photosynth. Res. 5: 139–157, 1984.

    Article  PubMed  CAS  Google Scholar 

  • Krey A., Govindjee: Fluorescence studies on a red alga, Porphyridium cruentum.–Biochim. Biophys. Acta. 120: 1–18, 1966.

    Article  PubMed  CAS  Google Scholar 

  • Kyle D.J., Ohad I., Arntzen C.J.: Membrane protein damage and repair: Selective loss of a quinone-protein function in chloroplast membranes.–P. Natl. Acad. Sci. USA 81: 4070–4074, 1984.

    Article  CAS  Google Scholar 

  • La Roche J., van der Staay G.W.M., Partensky F. et al.: Independent evolution of the prochlorophyte and green plant chlorophyll a/b light-harvesting proteins.–P. Natl. Acad. Sci. USA 93: 15244–15248, 1996.

    Article  Google Scholar 

  • Lakowicz J.R.: Fluorescence polarization.–In: Lakowicz J.R. (ed): Principles of Fluorescence Spectroscopy Pp. 111–153. Springer, Boston 1983a.

    Chapter  Google Scholar 

  • Lakowicz J.R.: Quenching of fluorescence.–In: Lakowicz J.R. (ed): Principles of Fluorescence Spectroscopy. Pp. 257–301. Springer, Boston 1983b.

    Chapter  Google Scholar 

  • Lamb J., Forfang K., Hohmann-Marriott M.: A practical solution for 77 K fluorescence measurements based on LED excitation and CCD array detector.–PLoS ONE 10: e0132258, 2015.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Laudenbach D.E., Reith M.E., Straus N.A.: Isolation, sequence analysis, and transcriptional studies of the flavodoxin gene from Anacystis nidulans R2.–J. Bacteriol. 170: 258–265, 1988.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lavaud J., Lepetit B.: An explanation for the inter-species variability of the photoprotective non-photochemical chlorophyll fluorescence quenching in diatoms.–BBA-Bioenergetics 1827: 294–302, 2013.

    Article  PubMed  CAS  Google Scholar 

  • Lepetit B., Volke D., Szabó M. et al.: Spectroscopic and molecular characterization of the oligomeric antenna of the diatom Phaeodactylum tricornutum.–Biochemistry46: 9813–9822, 20

    Article  PubMed  CAS  Google Scholar 

  • Ley A.C., Butler W.L.: Energy distribution in the photochemical apparatus of Porphyridium cruentum in state I and state II.–BBA-Bioenergetics 592: 349–363, 1980.

    Article  PubMed  CAS  Google Scholar 

  • Li D., Xie J., Zhao J. et al.: Light-induced excitation energy redistribution in Spirulina platensis cells: “spillover” or “mobile PBSs”?–BBA-Bioenergetics 1608: 114–121, 2004.

    Article  PubMed  CAS  Google Scholar 

  • Li H., Yang S., Xie J., Zhao J.: Probing the connection of PBSs to the photosystems in Spirulina platensis by artificially induced fluorescence fluctuations.–J. Lumin. 122-123: 294–296, 2007.

    Article  CAS  Google Scholar 

  • Li M., Semchonok D.A., Boekema E.J., Bruce B.D.: Characterization and evolution of tetrameric photosystem I from the thermophilic cyanobacterium Chroococcidiopsis sp TS-821.–Plant Cell 26: 1230–1245, 2014.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li Y., Chen M.: Novel chlorophylls and new directions in photosynthesis research.–Funct. Plant Biol. 42: 493–501, 2015.

    Article  Google Scholar 

  • Litvin F.F., Krasnovsky A.A.: Investigation by fluorescence spectra of intermediate stages of chlorophyll biosynthesis in etiolated leaves.–Dokl. Acad. Nauk+ 117: 106–109, 1957.

    CAS  Google Scholar 

  • Litvín R., Bína D., Herbstová M., Gardian Z.: Architecture of the light-harvesting apparatus of the eustigmatophyte alga Nannochloropsis oceanica.–Photosynth. Res. 130: 137–150, 20

    Article  PubMed  CAS  Google Scholar 

  • Liu H., Roose J.L., Cameron J.C., Pakrasi H.B.: A genetically tagged Psb27 protein allows purification of two consecutive photosystem II (PSII) assembly intermediates in Synechocystis 6803, a cyanobacterium.–J. Biol. Chem. 286: 24865–24871, 2011.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu H., Zhang H., Niedzwiedzki D.M. et al.: Phycobilisomes supply excitations to both photosystems in a megacomplex in cyanobacteria.–Science 342: 1104–1107, 2013.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Marx A., David L., Adir N.: Piecing together the phycobilisome.–In: Hohmann-Marriott M.F. (ed): The Structural Basis of Biological Energy Generation. Pp. 59–76. Springer, Dordrecht 2014.

    Chapter  Google Scholar 

  • Maxwell K., Johnson G.N.: Chlorophyll fluorescence–a practical guide.–J. Exp. Bot. 51: 659–668, 2000.

    Article  PubMed  CAS  Google Scholar 

  • Mazor Y., Borovikova A., Nelson N.: The structure of plant photosystem I super-complex at 2.8 Å resolution.–Elife 4: e07433, 2015.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • McConnell M.D., Koop R., Vasil’ev, S., Bruce D.: Regulation of the distribution of chlorophyll and phycobilin-absorbed excitation energy in cyanobacteria. A structure-based model for the light state transition.–Plant Physiol. 130: 1201–1212, 2002.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • McCormac D.J., Marwood C.A., Bruce D., Greenberg B.M.: Assembly of Photosystem I and II during the early phases of lightinduced development of chloroplasts from proplastids in Spirodela oligorrhiza.–Photochem. Photobiol. 63: 837–845, 19

    Article  CAS  Google Scholar 

  • Miloslavina Y., Grouneva I., Lambrev P.H. et al.: Ultrafast fluorescence study on the location and mechanism of nonphotochemical quenching in diatoms.–BBA-Bioenergetics 1787: 1189–1197, 2009.

    Article  PubMed  CAS  Google Scholar 

  • Minagawa J.: State transitions–the molecular remodeling of photosynthetic supercomplexes that controls energy flow in the chloroplast.–BBA-Bioenergetics 1807: 897–905, 2011.

    Article  PubMed  CAS  Google Scholar 

  • Miyashita H., Ikemoto H., Kurano N. et al.: Chlorophyll d as a major pigment.–Nature 383: 402, 1996.

    Article  CAS  Google Scholar 

  • Morosinotto T., Breton J., Bassi R., Croce R.: The nature of a chlorophyll ligand in Lhca proteins determines the far red fluorescence emission typical of photosystem I.–J. Biol. Chem. 278: 49223–49229, 2003.

    Article  PubMed  CAS  Google Scholar 

  • Mukerji I., Sauer K.: Temperature Dependent Steady State and Picosecond Kinetic Fluorescence Measurements of a Photosystem I Preparation from Spinach. Pp. 30. Lawrence Berkeley Laboratory, Berkeley, 1988.

    Google Scholar 

  • Müller N.: [Relationships between assimilation, absorption and fluorescence in the chlorophyll of the living leaf.]–Jahrb. Wiss. Bot. 9: 42–49, 1887. [In German]

    Google Scholar 

  • Mullet J., Burke J., Arntzen C.: A developmental study of photosystem I peripheral chlorophyll proteins.–Plant Physiol. 65: 823–827 1980a.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mullet J., Burke J., Arntzen C.: Chlorophyll proteins of photosystem I.–Plant Physiol. 65: 814–822, 1980b.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mullineaux C.W., Allen J.F.: State 1-State 2 transitions in the cyanobacterium Synechococcus 6301 are controlled by the redox state of electron carriers between Photosystems I and II.–Photosynth. Res. 23: 297–311, 1990.

    Article  PubMed  CAS  Google Scholar 

  • Mullineaux C.W.: Electron transport and light-harvesting switches in cyanobacteria.–Front. Plant Sci. 5: 7, 2014.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mullineaux C.W.: Excitation energy transfer from phycobilisomes to photosystem I in a cyanobacterial mutant lacking photosystem II.–BBA-Bioenergetics 1184: 71–77, 1994.

    Article  CAS  Google Scholar 

  • Mullineaux C.W.: Excitation energy transfer from phycobilisomes to photosystem I in a cyanobacterium.–BBABioenergetics 1100: 285–292, 1992.

    Article  CAS  Google Scholar 

  • Mullineaux C.W.: Phycobilisome-reaction centre interaction in cyanobacteria.–Photosynth. Res. 95: 175–182, 2008.

    Article  PubMed  CAS  Google Scholar 

  • Mulo P., Sakurai I., Aro E.-M.: Strategies for psbA gene expression in cyanobacteria, green algae and higher plants: from transcription to PSII repair.–BBA-Bioenergetics 1817: 247–257, 2012.

    Article  PubMed  CAS  Google Scholar 

  • Murakami A.: Quantitative analysis of 77K fluorescence emission spectra in Synechocystis sp. PCC 6714 and Chlamydomonas reinhardtii with variable PS I/PS II stoichiometries.–Photosynth. Res. 53: 141–148, 1997.

    Article  CAS  Google Scholar 

  • Murata N., Nishimura M., Takamiya A.: Fluorescence of chlorophyll in photosynthetic systems. III. Emission and action spectra of fluorescence–three emission bands of chlorophyll a and the energy transfer between two pigment systems.–Biochim. Biophys. Acta 126: 234–243, 1966.

    Article  PubMed  CAS  Google Scholar 

  • Murata N.: Control of excitation transfer in photosynthesis I. Light-induced change of chlorophyll a fluoresence in Porphyridium cruentum.–BBA-Bioenergetics 172: 242–251, 19

    Article  PubMed  CAS  Google Scholar 

  • Murata N.: Control of excitation transfer in photosynthesis. IV. Kinetics of chlorophyll a fluorescence in Porphyra yezoensis.–BBA-Bioenergetics 205: 379–389, 1970.

    Article  PubMed  CAS  Google Scholar 

  • Mysliwa-Kurdziel B., Barthélemy X., Strzalka K., Franck F.: The early stages of photosystem II assembly monitored by measurements of fluorescence lifetime, fluorescence induction and isoelectric focusing of chlorophyll-proteins in barley etiochloroplasts.–Plant Cell Physiol. 38: 1187–1196, 1997.

    Article  CAS  Google Scholar 

  • Nagao R., Takahashi S., Suzuki T. et al.: Comparison of oligomeric states and polypeptide compositions of fucoxanthin chlorophyll a/c-binding protein complexes among various diatom species.–Photosynth. Res. 117: 281–288, 2013.

    Article  PubMed  CAS  Google Scholar 

  • Nagao R., Tomo T., Noguchi E. et al.: Purification and characterization of a stable oxygen-evolving Photosystem II complex from a marine centric diatom, Chaetoceros gracilis.–BBABioenergetics 1797: 160–166, 2010.

    Article  CAS  Google Scholar 

  • Nakatani H., Ke B., Dolan E., Arntzen C.: Identity of the photosystem II reaction center polypeptide.–BBABioenergetics 765: 347–352, 1984.

    Article  CAS  Google Scholar 

  • Natali A., Croce R.: Characterization of the major lightharvesting complexes (LHCBM) of the green alga Chlamydomonas reinhardtii.–PLoS ONE 10: e0119211, 2015.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nickelsen J., Rengstl B.: Photosystem II assembly: from cyanobacteria to plants.–Annu. Rev. Plant Biol. 64: 609–635, 2013.

    Article  PubMed  CAS  Google Scholar 

  • Nixon P.J., Barker M., Boehm M. et al.: FtsH-mediated repair of the photosystem II complex in response to light stress.–J. Exp. Bot. 56: 357–363, 2005.

    Article  PubMed  CAS  Google Scholar 

  • Novoderezhkin V.I., Palacios M.A., van Amerongen H., van Grondelle R.: Excitation dynamics in the LHCII complex of higher plants: modeling based on the 2.72 Å crystal structure.–J. Phys. Chem. B 109: 10493–10504, 2005.

    Article  PubMed  CAS  Google Scholar 

  • Owens T.G.: Dynamics and mechanism of singlet energytransfer between carotenoids and chlorophylls-light harvesting and nonphotochemical fluorescence quenching.–In: Murata N. (ed.): Research in Photosynthesis. Pp. 179–186. Kluwer Acad. Publ., Dordrecht 1992.

    Google Scholar 

  • Pakrasi H.B., Goldenberg A., Sherman L.A.: Membrane development in the cyanobacterium, Anacystis nidulans, during recovery from iron starvation.–Plant Physiol. 79: 290–295, 1985a.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pakrasi H.B., Riethman H.C., Sherman L.A.: Organization of pigment proteins in the photosystem II complex of the cyanobacterium Anacystis nidulans R2.–P. Natl. Acad. Sci. USA 82: 6903–6907, 1985b.

    Article  CAS  Google Scholar 

  • Park Y.I., Sandström S., Gustafsson P., Öquist G.: Expression of the isiA gene is essential for the survival of the cyanobacterium Synechococcus sp. PCC 7942 by protecting photosystem II from excess light under iron limitation.–Mol. Microbiol. 32: 123–129, 1999.

    Article  PubMed  CAS  Google Scholar 

  • Passarini F., Wientjes E., Hienerwadel R., Croce R.: Molecular basis of light harvesting and photoprotection in CP24 unique features of the most recent antenna complex.–J. Biol. Chem. 284: 29536–29546, 2009.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pfundel E., Pfeffer M.: Modification of photosystem I light harvesting of bundle-sheath chloroplasts occurred during the evolution of NADP-malic enzyme C4 photosynthesis.–Plant Physiol. 114: 145–152, 1997.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Qin X., Suga M., Kuang T., Shen J.-R.: Structural basis for energy transfer pathways in the plant PSI-LHCI supercomplex.–Science 348: 989–995, 2015.

    Article  PubMed  CAS  Google Scholar 

  • Rabinowitch E., Govindjee: Photosynthesis. Pp. 273. John Wiley & Sons, Inc, New York 1969.

    Google Scholar 

  • Riethman H.C., Sherman L.A.: Purification and characterization of an iron stress-induced chlorophyll-protein from the cyanobacterium Anacystis nidulans R2.–BBA-Bioenergetics 935: 141–151, 1988.

    Article  PubMed  CAS  Google Scholar 

  • Rijgersberg C.P., Amesz J., Thielen A., Swager J.A.: Fluorescence emission spectra of chloroplasts and subchloroplast preparations at low temperature.–BBA-Bioenergetics 545: 473–482, 1979.

    Article  PubMed  CAS  Google Scholar 

  • Ruban A.V., Calkoen F., Kwa S.L.S. et al.: Characterisation of LHC II in the aggregated state by linear and circular dichroism spectroscopy.–BBA-Bioenergetics 1321: 61–70, 1997.

    Article  CAS  Google Scholar 

  • Ruban A.V., Johnson M.P., Duffy C.D.P.: The photoprotective molecular switch in the photosystem II antenna.–BBABioenergetics 1817: 167–181, 2012.

    Article  CAS  Google Scholar 

  • Şener M., Strümpfer J., Hsin J. et al.: Förster energy transfer theory as reflected in the structures of photosynthetic lightharvesting systems.–ChemPhysChem. 12: 518–531, 2011.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sétif P., Mathis P., Vänngård T.: Photosystem I photochemistry at low temperature. Heterogeneity in pathways for electron transfer to the secondary acceptors and for recombination processes.–BBA-Bioenergetics 767: 404–414, 1984.

    Article  Google Scholar 

  • Schlodder E., Falkenberg K., Gergeleit M., Brettel K.: Temperature dependence of forward and reverse electron transfer from A1-, the reduced secondary electron acceptor in photosystem I.–Biochemistry 37: 9466–9476, 1998.

    Article  PubMed  CAS  Google Scholar 

  • Sjöback R., Nygren J., Kubista M.: Absorption and fluorescence properties of fluorescein.–Spectrochim. Acta A 51: 7–21, 1995.

    Article  Google Scholar 

  • Sobiechowska-Sasim M., Stoń-Egiert J., Kosakowska A.: Quantitative analysis of extracted phycobilin pigments in cyanobacteria–an assessment of spectrophotometric and spectrofluorometric methods.–J. Appl. Phycol. 26: 2065–2074, 2014.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Standfuss J., Kühlbrandt W.: The three isoforms of the lightharvesting complex II spectroscopic features, trimer formation, and functional roles.–J. Biol. Chem. 279: 36884–36891, 2004.

    Article  PubMed  CAS  Google Scholar 

  • Strasser R.J., Tsimilli-Michael M., Srivastava A.: Analysis of the Chlorophyll a Fluorescence Transient.–In: Papageorgiou G.C., {ieGovindjee (ed.): Chlorophyll a Fluorescence: A Signature of Photosynthesis. Pp. 321–362. Springer, Dordrecht 2004.

    Chapter  Google Scholar 

  • Sugiura M., Inoue Y.: Highly purified thermo-stable oxygenevolving photosystem II core complex from the thermophilic cyanobacterium Synechococcus elongatus having His-tagged CP43.–Plant Cell Physiol. 40: 1219–1231, 1999.

    Article  PubMed  CAS  Google Scholar 

  • Swingley W.D., Iwai M., Chen Y. et al.: Characterization of photosystem I antenna proteins in the prasinophyte Ostreococcus tauri.–BBA-Bioenergetics 1797: 1458–1464, 2010.

    Article  PubMed  CAS  Google Scholar 

  • Takahashi S., Badger M.R.: Photoprotection in plants: a new light on photosystem II damage.–Trends Plant Sci. 16: 53–60, 2011.

    Article  PubMed  CAS  Google Scholar 

  • Tang K., Ding W.-L., Höppner A. et al.: LCM: A light-harvesting pigment with a phytochrome chromophore.–P. Natl. Acad. Sci. USA 112: 15880–15885, 2015.

    Article  CAS  Google Scholar 

  • Tokutsu R., Minagawa J.: Energy-dissipative supercomplex of photosystem II associated with LHCSR3 in Chlamydomonas reinhardtii.–P. Natl. Acad. Sci. USA 110: 10016–10021, 2013.

    Article  Google Scholar 

  • Umena Y., Kawakami K., Shen J.-R., Kamiya N.: Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 Å.–Nature 473: 55–60, 2011.

    Article  PubMed  CAS  Google Scholar 

  • van Wijk K.J., Bingsmark S., Aro E.-M., Andersson B.: In vitro synthesis and assembly of photosystem II core proteins. the D1 protein can be incorporated into photosystem II in isolated chloroplasts and thylakoids.–J. Biol. Chem. 270: 25685–25695, 1995.

    Article  PubMed  Google Scholar 

  • Veith T., Büchel C.: The monomeric photosystem I-complex of the diatom Phaeodactylum tricornutum binds specific fucoxanthin chlorophyll proteins (FCPs) as light-harvesting complexes.–BBA-Bioenergetics 1767: 1428–1435, 2007.

    Article  PubMed  CAS  Google Scholar 

  • Walters R.G., Horton P.: Resolution of components of nonphotochemical chlorophyll fluorescence quenching in barley leaves.–Photosynth. Res. 27: 121–133, 1991.

    Article  PubMed  CAS  Google Scholar 

  • Watanabe M., Semchonok D.A., Webber-Birungi M.T. et al.: Attachment of phycobilisomes in an antenna–photosystem I supercomplex of cyanobacteria.–P. Natl. Acad. Sci. USA 111: 2512–2517, 2014.

    Article  CAS  Google Scholar 

  • Wei X., Su X., Cao P. et al.: Structure of spinach photosystem IILHCII supercomplex at 3.2 Å resolution.–Nature 534: 69–87, 2016.

    Article  PubMed  CAS  Google Scholar 

  • Weis E.: Chlorophyll fluorescence at 77 K in intact leaves: characterization of a technique to eliminate artifacts related to self-absorption.–Photosynth. Res. 6: 73–86, 1985.

    Article  PubMed  CAS  Google Scholar 

  • Wientjes E., van Stokkum I.H.M., van Amerongen H., Croce R.: The role of the individual Lhcas in photosystem I excitation energy trapping.–Biophys. J. 101: 745–754, 2011.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yamamoto Y., Hori H., Kai S. et al.: Quality control of Photosystem II: reversible and irreversible protein aggregation decides the fate of Photosystem II under excessive illumination.–Front. Plant Sci. 4: 433, 2013.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yokono M., Nagao R., Tomo T., Akimoto S.: Regulation of excitation energy transfer in diatom PSII dimer: How does it change the destination of excitation energy?–BBABioenergetics 1847: 1274–1282, 2015.

    Article  CAS  Google Scholar 

  • Young A.J., Frank H.A.: Energy transfer reactions involving carotenoids: quenching of chlorophyll fluorescence.–J. Photoch. Photobio. B 36: 3–15, 1996.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Department of Electronic Systems & ENERSENSE, NTNU, Trondheim, Norway

    J. J. Lamb

  2. Department of Biotechnology & CenTroN for Synthetic Biology, NTNU, Trondheim, Norway

    G. Røkke & M. F. Hohmann-Marriott

Authors
  1. J. J. Lamb
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. G. Røkke
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. M. F. Hohmann-Marriott
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to M. F. Hohmann-Marriott.

Additional information

This review is dedicated to Govindjee. In addition to Govindjee’s original contributions to the field, we, the authors, are also very thankful to Govindjee for sharing historical context and personal connections, which contributed to researchers making their discoveries. In the case of 77 K fluorescence, the topic of this review, Govindjee was not only witness to its first implementation, but also went on to refine and extend the interpretation of this powerful measuring technique. The following short historical introduction into 77 K fluorescence often refers to information obtained from publications by Govindjee and coworkers.

Acknowledgements: Martin Hohmann-Marriott acknowledges support from the Research Council Norway (grant number 240741). Gunvor Røkke’s research was supported by a PhD fellowship from the NT faculty of the Norwegian University of Science and Technology–NTNU. Jacob Lamb acknowledges the support from the ENERSENSE research initiative, and his research was supported by a postdoctoral fellowship from the Norwegian University of Science and Technology–NTNU.

This article is published with open access at link.springer.com

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lamb, J.J., Røkke, G. & Hohmann-Marriott, M.F. Chlorophyll fluorescence emission spectroscopy of oxygenic organisms at 77 K. Photosynthetica 56, 105–124 (2018). https://doi.org/10.1007/s11099-018-0791-y

Download citation

  • Received: 27 October 2017

  • Accepted: 10 January 2018

  • Published: 08 February 2018

  • Issue Date: March 2018

  • DOI: https://doi.org/10.1007/s11099-018-0791-y

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Additional key words

  • fluorescence
  • low temperature
  • photosynthesis
Download PDF

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.