Skip to main content
Log in

Chlorophyll fluorescence imaging can reflect development of vascular connection in grafting union in some Solanaceae species

  • Original papers
  • Published:
Photosynthetica

Abstract

Graft union development in plants has been studied mainly by destructive methods such as histological studies. The aim of this work was to evaluate whether the chlorophyll fluorescence imaging (CFI) technique is sensitive enough to reflect changes at the cellular level in different Solanaceae grafted plants 30 d after grafting, when both grafted partners were well fused and strong enough in all plant combinations. The pepper cultivar ‘Adige’ was grafted onto different Capsicum spp. accessions typified with different compatibility degrees; eggplant was grafted on Solanum torvum and pepper homografts as compatible unions; pepper was grafted on S. torvum and on tomato as incompatible unions. ‘Adige’/’Adige’ and ‘Adige’/pepper A25 showed a higher maximum quantum efficiency of PSII associated with higher values of actual quantum efficiency of PSII and photochemical quenching as well as with vascular regeneration across the graft interface. Our results highlighted that CFI changes reflected histological observations in grafted Solanaceae plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A:

Capsicum annuum L. var. Adige

A25:

C. annuum accession A25

B14:

C. baccatum accession B14

C12:

C. chinense accession C12

BEU:

tomato rootstock Beufort

CFI:

chlorophyll fluorescence imaging

Chl:

chlorophyll

DAG:

days after grafting

EGG:

eggplant var. Cristal

Fm :

maximal fluorescence yield of the dark-adapted samples

Fm`:

maximal fluorescence yield of the light-adapted samples

Fo :

minimal fluorescence yield of the dark-adapted samples

Fo`:

minimal fluorescence yield of the light-adapted samples

Fs :

steady-state fluorescence yield during actinic irradiation

Fv :

variable fluorescence (Fm–Fo) in the dark-adapted samples

Fv/Fm :

maximum quantum efficiency of PSII photochemistry

NPQ:

nonphotochemical quenching calculated from Stern-Volmer equation

qP :

photochemical quenching

ST:

Solanum torvum

TOM:

tomato var. Gordal

ΦPSII :

actual quantum efficiency of PSII

References

  • Aloni B., Cohen R., Karni L. et al.: Hormonal signaling in rootstock-scion interactions. — Sci. Hortic.-Amsterdam 127: 119–126, 2010.

    Article  CAS  Google Scholar 

  • Berger S., Benediktyová Z., Matouš K. et al.: Visualization of dynamics of plant-pathogen interaction by novel combination of chlorophyll fluorescence imaging and statistical analysis: differential effects of virulent and avirulent strains of P. syringae and of oxylipins on A. thaliana. — J. Exp.Bot. 58: 797–806, 2007.

    Article  CAS  PubMed  Google Scholar 

  • Biles C., Martyn R., Wilson H.: Isoenzymes and general proteins from various watermelon cultivars and tissue types. — HortSci. 24: 810–812, 1989.

    CAS  Google Scholar 

  • Bilger W., Björkman O.: Temperature dependence of violaxanthin de-epoxidation and non-photochemical fluorescence quenching in intact leaves of Gossypium hirsutum L. and Malva parviflora L. — Planta 184: 226–234, 1991.

    Article  CAS  PubMed  Google Scholar 

  • Calatayud Á., Gorbe E., Roca D., Martínez P.F.: Effect of two nutrient solution temperatures on nitrate uptake, nitrate reductase activity, NH4 + concentration and chlorophyll a fluorescence in rose plants. — Environ. Exp. Bot. 64: 65–74, 2008.

    Article  CAS  Google Scholar 

  • Calatayud Á., San Bautista A., Pascual B. et al.: Use of chlorophyll fluorescence imaging as diagnostic technique to predict compatibility in melon graft. — Sci. Hortic.-Amsterdam 149: 13–18, 2013.

    Article  CAS  Google Scholar 

  • Clearwater M.J., Lowe R.G., Hofstee B.J. et al.: Hydraulic conductance and rootstock effects in grafted vines of kiwifruit. — J. Exp. Bot. 55: 1371–1382, 2004.

    Article  CAS  PubMed  Google Scholar 

  • Deloire A., Hébant C.: Peroxidase activity and lignification at the interface between stock and scion of compatible and incompatible grafts of Capsicum on Lycopersicum. — Ann. Bot.-London 49: 887–891, 1982.

    Article  CAS  Google Scholar 

  • Dhondt S., Vanhaeren H., Van Loo D. et al.: Plant structure visualization by high-resolution X-ray computed tomography. — Trends Plant Sci. 15: 419–422, 2010.

    Article  CAS  PubMed  Google Scholar 

  • Errea P., Garay L., Marín J.A.: Early detection of graft incompatibility in apricot (Prunus armeniaca) using in vitro techniques. — Physiol. Plantarum 112: 135–141, 2001.

    Article  CAS  Google Scholar 

  • Errea P.: Implications of phenolic compounds in graft incompatibility in fruit tree species. — Sci. Hortic.-Amsterdam 74: 195–205, 1998.

    Article  CAS  Google Scholar 

  • Errea P., Felipe A., Herrero M.: Graft establishment between compatible and incompatible Prunus spp. — J. Exp. Bot. 45: 393–401, 1994.

    Article  Google Scholar 

  • Fernández-García N., Carvajal M., Olmos E.: Graft union formation in tomato plants: peroxidase and catalase involvement. — Ann. Bot.-London 93: 53–60, 2004a.

    Article  Google Scholar 

  • Fernández-García N., Martínez V., Carvajal M.: Effect of salinity on growth, mineral composition, and water relations of grafted tomato plants. — J. Plant Nutr. Soil Sci. 167: 616–622, 2004b.

    Article  Google Scholar 

  • Flaishman M. A., Loginovsky K., Golobowich S., Lev-Yadun S.: Arabidopsis thaliana as a model system for graft union development in homografts and heterografts. — J. Plant Growth Regul. 27: 231–239, 2008.

    Article  CAS  Google Scholar 

  • Genty B., Briantais J.-M., Baker N.R.: The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. — Biochem. Biophys. Acta 990: 87–92, 1989.

    Article  CAS  Google Scholar 

  • Goldschmidt E.E.: Plant grafting: new mechanisms, evolutionary implications. — Front. Plant Sci. 5: 727, 2014.

    Article  PubMed  PubMed Central  Google Scholar 

  • Guidi L., Mori S., Degl’Innocenti E., Pecchia S.: Effects of ozone exposure or fungal pathogen on white lupin leaves as determined by imaging of chlorophyll a fluorescence. — Plant Physiol. Bioch. 45: 851–857, 2007.

    Article  CAS  Google Scholar 

  • Hartmann H., Kester D., Davies F., Geneve R.: Plant Propagation. Principes and Practices, 7th ed. Pp. 849. Prentice Hall, New Jersey 2002.

    Google Scholar 

  • Hudina M., Orazem P., Jakopic J., Stampar F.: The phenolic content and its involvement in the graft incompatibility process of various pear rootstocks (Pyrus communis L.). — J. Plant Physiol. 171: 76–84, 2014.

    Article  CAS  PubMed  Google Scholar 

  • Irisarri P., Binczycki P., Errea P. et al: Oxidative stress associated with rootstock-scion interactions in pear/quince combinations during early stages of graft development. — J. Plant Physiol. 176: 25–35, 2015.

    Article  CAS  PubMed  Google Scholar 

  • Ives L., Brathwaite R., Barclay G. et al.: Graft compatibility of scotch bonnet (Capsicum chinense Jacq) with selected salttolerant solanaceous. — J. Agric. Sci. Technol. 2: 81–92, 2012.

    Google Scholar 

  • Johkan M., Mitukuri K., Yamasaki S. et al.: Causes of defoliation and low survival rate of grafted sweet pepper plants. — Sci. Hortic.-Amsterdam 119: 103–107, 2009.

    Article  CAS  Google Scholar 

  • Kawaguchi M., Taji A., Backhouse D. et al.: Anatomy and physiology of graft incompatibility in solanaceous plants. — J. Hortic. Sci. Biotech. 83: 581–588, 2008.

    Article  Google Scholar 

  • Martínez-Ballesta M.C., Alcaraz-López C., Muries B. et al.: Physiological aspects of rootstock-scion interactions.–Sci. Hortic.-Amsterdam 127: 112–118, 2010.

    Article  Google Scholar 

  • Miguel A., De la Torre F., Baixauli C. et al.: [Grafting of vegetables.] Pp. 63. Ministerio de Agricultura, Pesca y Alimentación y Fundación Rural Caja, Valencia 2007. [In Spanish]

    Google Scholar 

  • Milien M., Renault-Spilmont A.-S., Cookson S.J. et al.: Visualization of the 3D structure of the graft union of grapevine using X-ray tomography. — Sci. Hortic.-Amsterdam 144: 130–140, 2012.

    Article  Google Scholar 

  • Mudge K., Janick J., Scofield S., Goldschmidt E. E.: A history of grafting.–In: Janick J. (ed.): Horticultural Reviews, Vol. 35. Pp. 437–494, John Wiley & Sons, New York 2009.

    Chapter  Google Scholar 

  • O’Brien T., McCully M.: The Study of Plant Structure: Principles and Selected Methods. Pp. 352. Melburne: Termacarphy. 1981.

    Google Scholar 

  • Oka Y., Offenbach R., Pivonia S.: Pepper rootstock graft compatibility and response to Meloidogyne javanica and M. incognita. — J. Nematol. 36: 137–141, 2004.

    PubMed  PubMed Central  Google Scholar 

  • Oquist G., Chow W.S.: On the relationship between the quantum yield of photosystem II electron transport, as determined by chlorophyll fluorescence and the quantum yield of CO2- dependent O2 evolution. — Photosynth. Res. 33: 51–62, 1992.

    Article  CAS  PubMed  Google Scholar 

  • Orsini F., Sanoubar R., Oztekin G.B. et al.: Improved stomatal regulation and ion partitioning boosts salt tolerance in grafted melon. — Func. Plant Biol. 40: 628–636, 2013.

    Article  CAS  Google Scholar 

  • Osmond C.B.: What is photoinhibition? Some insights from comparisons of shade and sun plants.–In: Baker N.R., Bowyer J.R. (ed.): Photoinhibition of Photosynthesis from Molecular Mechanisms to the Field. Pp. 1–24. Bios Sci. Publ., Oxford 1994.

    Google Scholar 

  • Otsuka K.: Studies on nutritional physiology of grafted plants, part 2. Rootstocks-scion influences on growth and on ionic accumulation of solanaceous grafts. — Jpn. J. Soil Sci. Plant Nutr. 28: 285–289, 1957.

    CAS  Google Scholar 

  • Oxborough K., Baker N.R.: An instrument capable of imaging chlorophyll a fluorescence from intact leaves at very low irradiance and at cellular and subcellular levels of organization. — Plant Cell Environ. 20: 1473–1483, 1997.

    Article  Google Scholar 

  • Padgett M., Morrison J.C.: Changes in grape berry exudates during fruit development and their effect on mycelial growth of Botrytis cinerea. — J. Am. Soc. Hortic. Sci. 115: 269–273, 1990.

    Google Scholar 

  • Penella C., Nebauer S.G., Quiñones A. et.al.: Some rootstocks improve pepper tolerance to mild salinity through ionic regulation. — Plant Sci. 230: 12–22, 2015.

    Article  CAS  PubMed  Google Scholar 

  • Penella C., Nebauer S.G., Bautista A.S. et al.: Rootstock alleviates PEG-induced water stress in grafted pepper seedlings: Physiological responses. — J. Plant Physiol. 171: 842–851, 2014a.

    Article  CAS  PubMed  Google Scholar 

  • Penella C., Nebauer S.G., López-Galarza S. et al.: Evaluation of some pepper genotypes as rootstocks in water stress conditions. — Hortic. Sci. 41: 192–200, 2014b.

    Google Scholar 

  • Penella C., Nebauer S.G., San Bautista A. et al.: Improving Water Stress Resistance of Pepper through Grafting. Abstract in Innovation in Vegetable Grafting for Sustainability. 2nd COST action FA1204 Congress. Pp. 44. Carcavelos 2014c.

    Google Scholar 

  • Penella C., Nebauer S.G., Lopéz-Galarza S. et al.: Evaluation for salt stress tolerance of pepper genotypes to be used as rootstocks. — J. Food Agric. Environ. 11: 1101–1107, 2013.

    CAS  Google Scholar 

  • Pina A., Errea P., Martens H.J.: Graft union formation and cellto- cell communication via plasmodesmata in compatible and incompatible stem unions of Prunus spp. — Sci. Hortic.- Amsterdam 143: 144–150, 2012.

    Article  Google Scholar 

  • Pina A., Errea P., Schulz A., Martens H.J.: Cell-to-cell transport through plasmodesmata in tree callus cultures. — Tree Physiol. 29: 809–818, 2009.

    Article  PubMed  Google Scholar 

  • Pina A., Errea P.: A review of new advances in mechanism of graft compatibility- incompatibility. — Sci. Hortic.-Amsterdam 106: 1–11, 2005.

    Article  Google Scholar 

  • Quilliam R.S., Swarbrick P.J., Scholes J.D., Rolfe S.: Imaging photosynthesis in wounded leaves of Arabidopsis thaliana. — J. Exp. Bot. 57: 55–69, 2006.

    Article  CAS  PubMed  Google Scholar 

  • Rolfe S.A., Scholes J.D.: Chlorophyll fluorescence imaging of plant-pathogen interactions. — Protoplasma 247: 163–175, 2010.

    Article  CAS  PubMed  Google Scholar 

  • Rouphael Y., Schwarz D., Krumbein A., Colla G.: Impact of grafting on product quality of fruit vegetables. — Sci. Hortic.- Amsterdam 127: 172–179, 2010.

    Article  Google Scholar 

  • Ruiz J.M., Belakbir A., López-Cantarero I., Romero L.: Leafmacronutrient content and yield in grafted melon plants. A model to evaluate the influence of rootstock genotype. — Sci. Hortic.-Amsterdam 71: 227–234, 1997.

    Article  Google Scholar 

  • Sánchez-Rodríguez E., Romero L., Ruiz J.M.: Role of grafting in resistance to water stress in tomato plants: ammonia production and assimilation. — J. Plant Growth Regul. 32: 831–842, 2013.

    Article  Google Scholar 

  • Savvas D., Colla G., Rouphael Y., Schwarz D.: Amelioration of heavy metal and nutrient stress in fruit vegetables by grafting. — Sci. Hortic. 127: 156–161, 2010.

    Article  CAS  Google Scholar 

  • Schöning U., Kollmann R.: Phloem translocation in regenerating in vitro–heterografts of different compatibility. — J. Exp. Bot. 48: 289–295, 1997.

    Article  Google Scholar 

  • Schreiber U., Schliwa U., Bilger W.: Continuous recording of photochemical and non-photochemical chlorophyll fluorescence quenching with a new type of modulation fluorometer. — Photosynth. Res. 10: 51–62, 1986.

    Article  CAS  PubMed  Google Scholar 

  • Tadeo F.R., Gómez-Cadenas A., Ben-Cheikh W. et al.: Gibberellin-ethylene interaction controls radial expansion in citrus roots. — Planta 202: 370–378, 1997.

    Article  CAS  Google Scholar 

  • Trinchera A., Pandozy G., Rinaldi S. et al.: Graft union formation in artichoke grafting onto wild and cultivated cardoon: an anatomical study. — J. Plant Physiol. 170: 1569–1578, 2013.

    Article  CAS  PubMed  Google Scholar 

  • Wang Y., Kollmann R.: Vascular differentiation in the graft union of in vitro grafts with different compatibility. — Structural and functional aspects. — J. Plant Physiol. 147: 521–533, 1996.

    Article  CAS  Google Scholar 

  • Yin H., Yan B., Sun J. et al.: Graft-union development: a delicate process that involves cell-cell communication between scion and stock for local auxin accumulation. — J. Exp. Bot. 63: 4219–4232, 2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ángeles Calatayud.

Additional information

Acknowledgements: This work was financed by INIA (Spain) through Project RTA2013-00022-C02-01 and the European Regional Development Fund (ERDF).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Penella, C., Pina, A., San Bautista, A. et al. Chlorophyll fluorescence imaging can reflect development of vascular connection in grafting union in some Solanaceae species. Photosynthetica 55, 671–678 (2017). https://doi.org/10.1007/s11099-017-0690-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11099-017-0690-7

Additional key words

Navigation