Skip to main content

Advertisement

Log in

Role of Grafting in Resistance to Water Stress in Tomato Plants: Ammonia Production and Assimilation

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

In general, drought depresses nutrient uptake by the root and transport to the shoot due to a restricted transpiration rate, which may contribute to growth limitation under water deprivation. Moreover, water stress may also restrict the ability of plants to reduce and assimilate nitrogen through the inhibition of enzymes implicated in nitrogen metabolism. The assimilation of nitrogen has marked effects on plant productivity, biomass, and crop yield, and nitrogen deficiency leads to a decrease in structural components. Plants produce significant quantities of NH4 + through the reduction of NO3 and photorespiration, which must be rapidly assimilated into nontoxic organic nitrogen compounds. The aim of the present work was to determine the response of reciprocal grafts made between one tomato tolerant cultivar (Lycopersicon esculentum), Zarina, and a more sensitive cultivar, Josefina, to nitrogen reduction and ammonium assimilation under water stress conditions. Our results show that when cv. Zarina (tolerant cultivar) was used as rootstock grafted with cv. Josefina (ZarxJos), these plants showed an improved N uptake and NO3 assimilation, triggering a favorable physiological and growth response to water stress. On the other hand, when Zarina was used as the scion (JosxZar), these grafted plants showed an increase in the photorespiration cycle, which may generate amino acids and proteins and could explain their better growth under stress conditions. In conclusion, grafting improves N uptake or photorespiration, and increases leaf NO3 photoassimilation in water stress experiments in tomato plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abdelmageed AHA, Gruda N (2009) Influence of grafting on growth, development and some physiological parameters of tomatoes under controlled heat stress conditions. Eur J Hortic Sci 74:16–20

    Google Scholar 

  • Baethgen WE, Alley MM (1989) A manual colorimetric procedure of measuring ammonium nitrogen in soil and plant. Commun Soil Sci Plant 20:961–969

    Article  CAS  Google Scholar 

  • Boyer JS (1982) Plant productivity and the environment. Science 218:443–448

    Article  CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Cammaerts D, Jacobs M (1985) A study of the role of glutamate dehydrogenase in the nitrogen metabolism of Arabidopsis thaliana. Planta 163:517–526

    Article  CAS  PubMed  Google Scholar 

  • Carmo-Silva AE, Gore MA, Andrade-Sanchez P, French AN, Hunsaker DJ, Salvucci ME (2012) Decreased CO2 availability and inactivation of Rubisco limit photosynthesis in cotton plants under heat and drought stress in the field. Environ Exp Bot 83:1–11

    Article  CAS  Google Scholar 

  • Cataldo DA, Haroon M, Schreader LE, Young VL (1975) Rapid colorimetric determination of nitrate in plant tissue by nitration of salicylic acid. Commun Soil Sci Plant 6:71–80

    Article  CAS  Google Scholar 

  • Estañ MT, Martinez-Rodriguez MM, Perez-Alfocea F, Flowers TJ, Bolarin MC (2005) Grafting raises the salt tolerance of tomato through limiting the transport of sodium and chloride to the shoot. J Exp Bot 56:703–712

    Article  PubMed  Google Scholar 

  • Feierabend J, Beevers H (1972) Developmental studies on microbodies in wheat leaves. I. Conditions influencing enzyme development. Plant Physiol 49:28–32

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ferreira-Silva SL, Silva EN, Carvalho FEL, de Lima CS, Alves FAL, Silveira JAG (2010) Physiological alterations modulated by rootstock and scion combination in cashew under salinity. Sci Hortic 127:39–45

    Article  CAS  Google Scholar 

  • Fresneau C, Ghashghaie J, Cornic G (2007) Drought effect on nitrate reductase and sucrose-phosphate synthases activities in wheat (Triticum durum L.): role of leaf internal CO2. J Exp Bot 58:2983–2992

    Article  CAS  PubMed  Google Scholar 

  • Galmés J, Ribas-Carbó M, Medrano H, Flexas J (2011) Rubisco activity in Mediterranean species is regulated by the chloroplastic CO2 concentration under water stress. Environ Exp Bot 62:653–665

    Article  Google Scholar 

  • Gibon Y, Larher F (1997) Cycling assay for nicotinamide adenine dinucleotides: NaCl precipitation and ethanol solubilization of the reduced tetrazolium. Anal Biochem 251:153–157

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez EM, Gordon AJ, James CL, Arrese-Igor C (1995) The role of sucrose synthase in the response of soybean nodules to drought. J Exp Bot 26:1515–1523

    Article  Google Scholar 

  • Hageman RH, Hucklesby DP (1971) Nitrate reductase. Meth Enzymol 23:497–503

    Google Scholar 

  • Heckathorn SA, de Lucia EH, Zielinski RE (1997) The contribution of drought related decreases in foliar nitrogen concentration to decrease in photosynthetic capacity during and after drought in prairie grasses. Physiol Plantarum 101:173–182

    Article  CAS  Google Scholar 

  • Hirel B, Lea P (2001) Ammonia assimilation. In: Lea PJ, Morot- Gaudry JF (eds), Plant nitrogen. Springer, Berlin, pp 79–100

  • Hoder M, Rej R (1983) Alanine aminotransferase. In: Bergmeyer HU, Bergmeyer J, Gral M (eds) Methods of enzymatic analysis, vol 3. Weinhein, Chemie, pp 444–456

    Google Scholar 

  • Hodges M (2002) Enzyme redundancy and the importance of 2-oxoglutarate in plant ammonium assimilation. J Exp Bot 53:905–916

    Article  CAS  PubMed  Google Scholar 

  • Igarashi D, Tsuchida H, Miyako M, Oshumi C (2006) Glutamate: glyoxylate aminotransferase modulates amino acid content during photorespiration. Plant Physiol 142:901–910

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kaiser JJ, Lewis OAH (1984) Nitrate reductase and glutamine synthetase activity in leaves and roots of nitrate fed Helianthus annuus L. Plant Soil 70:127–130

    Article  Google Scholar 

  • Kim HY, Lim SS, Kwak JH, Lee DS, Lee SM, Ro HM, Choi WJ (2011) Dry matter and nitrogen accumulation and partitioning in rice (Oryza sativa L.) exposed to experimental warming with elevated CO2. Plant Soil 342:59–71

    Article  CAS  Google Scholar 

  • Kramer PJ, Boyer JS (1995) Water relations of plants and soils. Academic Press, San Diego, pp 495–524

    Google Scholar 

  • Krom MD (1980) Spectrophotometric determination of ammonia: study of a modified Berthelot reaction using salicylate and dichloroisocianurate. Analyst 105:305–316

    Article  CAS  Google Scholar 

  • Kronzucker HJ, Britto DT, Davenport RJ, Tester M (2001) Ammonium toxicity and the real cost of transport. Trends Plant Sci 6:335–337

    Article  CAS  PubMed  Google Scholar 

  • Lawlor DW (1995) Effects of water deficit on photosynthesis. In: Smirnoff N (ed) Environment and plant metabolism. Bios Scientific Publishers Ltd, Oxford, pp 129–160

    Google Scholar 

  • Lee JM, Oda M (2003) Grafting of herbaceous vegetable and ornamental crops. Hortic Rev 28:61–124

    Google Scholar 

  • Li H, Lascano RJ (2011) Deficit irrigation for enhancing sustainable water use: comparison of cotton nitrogen uptake and prediction of lint yield in a multivariate autoregressive state-space model. Environ Exp Bot 71:224–231

    Article  Google Scholar 

  • Liao CT, Lin CH (1996) Photosynthetic responses of grafted bitter melon seedlings to flood stress. Environ Exp Bot 32:167–172

    Article  Google Scholar 

  • Lillo C (1984) Diurnal variations of nitrite reductase, glutamine synthetase, glutamate synthase, alanine aminotransferase and aspartate aminotransferase in barley leaves. Physiol Plantarum 61:214–218

    Article  CAS  Google Scholar 

  • Lu B, Yuan Y, Zhang C, Ou J, Zhou W, Lin Q (2005) Modulation of key enzymes involved in ammonium assimilation and carbon metabolism by low temperature in rice (Oryza sativa L.) roots. Plant Sci 169:295–302

    Article  CAS  Google Scholar 

  • Martinez-Ballesta MC, Alcaraz-López C, Muries B, Mota-Cadenas C, Carvajal M (2010) Physiological aspects of rootstock-scion interactions. Sci Hortic 127:112–118

    Article  Google Scholar 

  • Masclaux-Daubresse C, Reisdorf-Cren M, Pageau K, Lelandais M, Grandjean O, Kronenberger J, Valadier MH, Feraud M, Jouglet T, Suzuki A (2006) Glutamine synthetase-glutamate synthase pathway and glutamate dehydrogenase play distinct roles in the sink-source nitrogen cycle in tobacco. Plant Physiol 140:444–456

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Matsumura H, Miyachi S (1980) Cycling assay for nicotinamide adenine dinucleotides. Methods Enzymol 69:465–470

    Article  CAS  Google Scholar 

  • Mena-Petite A, Lacuesta M, Muñoz-Rueda A (2006) Ammonium assimilation in Pinus radiata seedlings: effects of storage treatments, transplanting stress and water regimes after planting under simulated field conditions. Environ Exp Bot 55:1–14

    Article  CAS  Google Scholar 

  • Miflin BJ, Habash DZ (2002) The role of glutamine synthetase and glutamate dehydrogenase in nitrogen assimilation and possibilities for improvement in the nitrogen utilization of crops. J Exp Bot 53:979–987

    Article  CAS  PubMed  Google Scholar 

  • Nakano H, Muramatsu S, Makino A, Mae T (2000) Relationship between the suppression of photosynthesis and starch accumulation in the pod-removed bean. Aust J Plant Physiol 27:167–173

    CAS  Google Scholar 

  • Noctor G, Arisi AC, Jouanin L, Foyer CH (1999) Photorespiratory glycine enhances glutathione accumulation in both the chloroplastic and cytosolic compartments. J Exp Bot 50:1157–1167

    Article  CAS  Google Scholar 

  • Parry MAJ, Andralojc PJ, Khan S, Lea PJ, Keys AJ (2002) Rubisco activity: effects of drought stress. Ann Bot 89:833–839

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Passioura J (2007) The drought environment: physical, biological and agricultural perspectives. J Exp Bot 58:13–117

    Google Scholar 

  • Pulgar G, Villora G. Moreno DA, Romero L (2000) Improving the mineral nutrition in grafted melon plants: nitrogen metabolism. Biol Plantarum 43:607–609

    Google Scholar 

  • Robredo A, Pérez-López U, Miranda-Apodaca J, Lacuesta M, Mena-Petite A, Muñoz-Rueda A (2011) Elevated CO2 reduces the drought effect on nitrogen metabolism in barley plants during drought and subsequent recovery. Environ Exp Bot 71:399–408

    CAS  Google Scholar 

  • Roland P, Ulrich S, Manfred J, Wilfried FW, Siegfried J (2006) Lateral diffusion of CO2 from shaded to illuminated leaf parts affects photosynthesis inside homobaric leaves. New Phytol 169:779–788

    Article  Google Scholar 

  • Ruiz JM, Romero L (1999) Cucumber yield and nitrogen metabolism in response to nitrogen supply. Sci Hortic 82:309–316

    Article  Google Scholar 

  • Ruiz JM, Belakbir A, López-Cantarero I, Romero L (1997) Leaf-macronutrient content and yield in grafted melon plants: a model to evaluate the influence of rootstock genotype. Sci Hortic 71:227–234

    Article  Google Scholar 

  • Ruiz JM, Rivero RM, Cervilla LM, Castellano R, Romero L (2006) Grafting to improve nitrogen-use efficiency traits in tobacco plants. J Sci Food Agric 86:1014–1021

    Article  CAS  Google Scholar 

  • Sánchez-Rodríguez E, Rubio-Wilhelmi MM, Cervilla LM, Blasco B, Rios JJ, Rosales MA, Romero L, Ruiz JM (2010) Genotypic differences in some physiological parameters symptomatic for oxidative stress under moderate drought in tomato plants. Plant Sci 178:30–40

    Article  Google Scholar 

  • Sánchez-Rodríguez E, Rubio-Wilhelmi MM, Rios JJ, Blasco B, Rosales MA, Melgarejo R, Romero L, Ruiz JM (2011a) Ammonia production and assimilation: its importance as a tolerance mechanism during moderate water deficit in tomato plants. J Plant Physiol 168:816–823

    Article  PubMed  Google Scholar 

  • Sánchez-Rodríguez E, Leyva R, Constant C, Romero L, Ruiz JM (2011b) How affect the grafting to ionome on cherry tomato plants under water stress? Sci Hortic (under review)

  • Sánchez-Rodríguez E, Ruiz JM, Federico F, Moreno DA (2011c) Phenolic metabolism in grafted versus nongrafted cherry tomatoes under the influence of water stress. J Agric Food Chem 59:8839–8846

    Article  PubMed  Google Scholar 

  • Singh RP, Srivastava HS (1986) Increase in glutamate synthase activity in maize seedlings in response to nitrate and ammonium nitrogen. Physiol Plantarum 66:413–416

    Article  CAS  Google Scholar 

  • Singh B, Usha K (2003) Salicylic acid induced physiological and biochemical changes in wheat seedling under water stress. J Plant Growth Regul 39:137–141

    Article  CAS  Google Scholar 

  • Venema JH, Dijk BE, Bax JM, van Hasselt PR, Elzenga JTM (2008) Grafting tomato (Solanum lycopersicum) onto the rootstock of a high-altitude accession of Solanum habrochaites improves suboptimal-temperature tolerance. Environ Exp Bot 63:359–367

    Article  Google Scholar 

  • Wang ZQ, Yuan YZ, Ou JQ, Lin QH, Zhang CF (2007) Glutamine synthetase and glutamate dehydrogenase contribute differentially to proline accumulation in leaves of wheat (Triticum aestivum) seedlings exposed to different salinity. J Plant Physiol 164:695–701

    Article  CAS  PubMed  Google Scholar 

  • Wingler A, Lea PJ, Quick WP, Leegood RC (2000) Photorespiration: metabolic pathways and their role in stress protection. Physiol Trans Royal Soc B 355:1517–1529

    Article  CAS  Google Scholar 

  • Wolf B (1982) A comprehensive system of leaf analysis and its use for diagnosing crop nutrient status. Commun Soil Sci Plant Anal 13:1035–1059

    Article  CAS  Google Scholar 

  • Xu ZZ, Zhou GS (2006) Nitrogen metabolism and photosynthesis in Leymus chinensis in response to long-term soil drought. J Plant Growth Regul 25:252–266

    Article  CAS  Google Scholar 

  • Yang X, Wang X, Wei M, Hikosaka S, Goto E (2010) Response of ammonia assimilation in cucumber seedlings to nitrate stress. J Plant Biol 53:173–179

    Article  CAS  Google Scholar 

  • Yemm EW, Cocking EC (1955) The determination of amino acids with ninhydrin. Analyst 80:209–213

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financed by the PAI program (Plan Andaluz de Investigación, Grupo de Investigación AGR161) and by a Grant from the FPU of the Ministerio de Educación y Ciencia awarded to ESR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eva Sánchez-Rodríguez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sánchez-Rodríguez, E., Romero, L. & Ruiz, J.M. Role of Grafting in Resistance to Water Stress in Tomato Plants: Ammonia Production and Assimilation. J Plant Growth Regul 32, 831–842 (2013). https://doi.org/10.1007/s00344-013-9348-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-013-9348-2

Keywords

Navigation