Skip to main content
Log in

Chlorophyll fluorescence imaging of plant–pathogen interactions

  • Review Article
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

Chlorophyll fluorescence imaging provides a noninvasive, non-destructive method with which to measure heterogenous changes in photosynthetic metabolism in plants infected by pathogens. The availability of commercial imaging fluorimeters has helped make this technique available to the wider scientific community, but considerable care is needed, both in experimental design and in the interpretation of results, to make the most of this powerful analytical tool. The origins of changes in chlorophyll fluorescence yield are discussed and the use of conventional and novel combinatorial imaging approaches explored, together with complementary techniques such as thermal imaging. This review examines the use of chlorophyll fluorescence imaging as a method for the early detection of viral, bacterial and fungal infection, before symptoms are visible by eye, and also as a means with which to probe underlying pathogen-induced changes in host physiology in both compatible and incompatible interactions. The use of chlorophyll fluorescence imaging to study host physiology is greatly enhanced when the atmosphere around the leaf is manipulated and simultaneous measurements of gas exchange made: The cost to the host plant of different resistance mechanisms can be calculated, the fate of the products of photosynthetic electron transport determined and localised alterations in the source–sink status of host tissue visualised.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aldea M, Frank TD, DeLucia EH (2006a) A method for quantitative analysis of spatially variable physiological processes across leaf surfaces. Photosynth Res 90:161–172

    Article  CAS  PubMed  Google Scholar 

  • Aldea M, Hamilton JG, Resti JP, Zangerl AR, Berenbaum MR, Frank TD, DeLucia EH (2006b) Comparison of photosynthetic damage from arthropod herbivory and pathogen infection in understory hardwood saplings. Oecologia 149:221–232

    Article  PubMed  Google Scholar 

  • Bae H, Kim MS, Sicher RC, Bae HJ, Bailey BA (2006) Necrosis- and ethylene-inducing peptide from Fusarium oxysporum induces a complex cascade of transcripts associated with signal transduction and cell death in Arabidopsis. Plant Physiol 141:1056–1067

    Article  CAS  PubMed  Google Scholar 

  • Baker NR (2008) Chlorophyll fluorescence: a probe of photosynthesis in vivo. Annu Rev Plant Biol 59:89–113

    Article  CAS  PubMed  Google Scholar 

  • Baker NR, Rosenqvist E (2004) Applications of chlorophyll fluorescence can improve crop production strategies: an examination of future possibilities. J Exp Bot 55:1607–1621

    Article  CAS  PubMed  Google Scholar 

  • Baker NR, Oxborough K, Lawson T, Morison JIL (2001) High resolution imaging of photosynthetic activities of tissues, cells and chloroplasts in leaves. J Exp Bot 52:615–621

    Article  CAS  PubMed  Google Scholar 

  • Balachandran S, Osmond CB, Daley PF (1994) Diagnosis of the earliest strain-specific interactions between tobacco mosaic virus and chloroplasts of tobacco leaves in vivo by means of chlorophyll fluorescence imaging. Plant Physiol 104:1059–1065

    CAS  PubMed  Google Scholar 

  • Berger S, Papadopoulos M, Schreiber U, Kaiser W, Roitsch T (2004) Complex regulation of gene expression, photosynthesis and sugar levels by pathogen infection in tomato. Physiol Plant 122:419–428

    Article  CAS  Google Scholar 

  • Berger S, Benediktyová Z, Matouš K, Bonfig K, Mueller MJ, Nedbal L, Roitsch T (2007) Visualization of dynamics of plant–pathogen interaction by novel combination of chlorophyll fluorescence imaging and statistical analysis: differential effects of virulent and avirulent strains of P. syringae and of oxylipins on A. thaliana. J Exp Bot 58:797–806

    Article  CAS  PubMed  Google Scholar 

  • Björkman O, Demmig B (1987) Photon yield of O2 evolution and chlorophyll fluorescence characteristics at 77 K among vascular plants of diverse origins. Planta 170:489–504

    Article  Google Scholar 

  • Bonfig KB, Schreiber U, Gabler A, Roitsch T, Berger S (2006) Infection with virulent and avirulent P. syringae strains differentially affects photosynthesis and sink metabolism in Arabidopsis leaves. Planta 225:1–12

    Article  CAS  PubMed  Google Scholar 

  • Chaerle L, Van Der Straeten D (2001) Seeing is believing: imaging techniques to monitor plant health. Biochim Biophys Acta Gene Struct Expr 1519:153–166

    CAS  Google Scholar 

  • Chaerle L, Hagenbeek D, De Bruyne E, Valcke R, Van Der Straeten D (2004) Thermal and chlorophyll-fluorescence imaging distinguish plant–pathogen interactions at an early stage. Plant Cell Physiol 45:887–896

    Article  CAS  PubMed  Google Scholar 

  • Chaerle L, Pineda M, Romero-Aranda R, Van Der Straeten D, Baron M (2006) Robotized thermal and chlorophyll fluorescence imaging of pepper mild mottle virus infection in Nicotiana benthamiana. Plant Cell Physiol 47:1323–1336

    Article  CAS  PubMed  Google Scholar 

  • Chaerle L, Hagenbeek D, De Bruyne E, Van Der Straeten D (2007a) Chlorophyll fluorescence imaging for disease-resistance screening of sugar beet. Plant Cell Tiss Organ Cult 91:97–106

    Article  CAS  Google Scholar 

  • Chaerle L, Hagenbeek D, Vanrobaeys X, Van Der Straeten D (2007b) Early detection of nutrient and biotic stress in Phaseolus vulgaris. Int J Remote Sens 28:3479–3492

    Article  Google Scholar 

  • Chou H-M, Bundock N, Rolfe SA, Scholes JD (2000) Infection of Arabidopsis thaliana leaves with Albugo candida (white blister rust) causes a reprogramming of host metabolism. Mol Plant Pathol 1:99–113

    Article  CAS  PubMed  Google Scholar 

  • Cséfalvay L, Di Gaspero G, Matouš K, Bellin D, Ruperti B, Olejníčková J (2009) Pre-symptomatic detection of Plasmopara viticola infection in grapevine leaves using chlorophyll fluorescence imaging. Eur J Plant Pathol 125:291–302

    Article  Google Scholar 

  • Flors C, Fryer MJ, Waring J, Reeder B, Bechtold U, Mullineaux PM, Nonell S, Wilson MT, Baker NR (2006) Imaging the production of singlet oxygen in vivo using a new fluorescent sensor, Singlet Oxygen Sensor Green®. J Exp Bot 57:1725–1734

    Article  CAS  PubMed  Google Scholar 

  • Genty B, Wonders J, Baker NR (1990) Non-photochemical quenching of Fo in leaves is emission wavelength dependent: consequences for quenching analysis and its interpretation. Photosynth Res 26:133–139

    Article  CAS  Google Scholar 

  • Guidi L, Mori S, Degl’Innocenti E, Pecchia S (2007) Effects of ozone exposure or fungal pathogen on white lupin leaves as determined by imaging of chlorophyll a fluorescence. Plant Physiol Biochem 45:851–857

    Article  CAS  PubMed  Google Scholar 

  • Havaux M, Triantaphylidès C, Genty B (2006) Autoluminescence imaging: a non-invasive tool for mapping oxidative stress. Trends Plant Sci 11:480–484

    Article  CAS  PubMed  Google Scholar 

  • Jansen M, Gilmer F, Biskup B, Nagel KA, Rascher U, Fischbach A, Briem S, Dreissen G, Tittmann S, Braun S, De Jaeger I, Metzlaff M, Schurr U, Scharr H, Walter A (2009) Simultaneous phenotyping of leaf growth and chlorophyll fluorescence via GROWSCREEN FLUORO allows detection of stress tolerance in Arabidopsis thaliana and other rosette plants. Funct Plant Biol 36:902–914

    Article  CAS  Google Scholar 

  • Kuckenberg J, Tartachnyk I, Noga G (2009) Temporal and spatial changes of chlorophyll fluorescence as a basis for early and precise detection of leaf rust and powdery mildew infections in wheat leaves. Precision Agric 10:34–44

    Article  Google Scholar 

  • Lawson T, Oxborough K, Morison JIL, Baker NR (2002) Responses of photosynthetic electron transport in stomatal guard cells and mesophyll cells in intact leaves to light, CO2, and humidity. Plant Physiol 128:52–62

    Article  CAS  PubMed  Google Scholar 

  • Lindenthal M, Steiner U, Dehne HW, Oerke EC (2005) Effect of downy mildew development on transpiration of cucumber leaves visualized by digital infrared thermography. Phytopathology 95:233–240

    Article  PubMed  Google Scholar 

  • Lohaus G, Heldt HW, Osmond CB (2000) Infection with phloem limited Abutilon mosaic virus causes localized carbohydrate accumulation in leaves of Abutilon striatum: relationships to symptom development and effects on chlorophyll fluorescence quenching during photosynthetic induction. Plant Biol 2:161–167

    Article  CAS  Google Scholar 

  • Matouš K, Benediktyová Z, Berger S, Roitsch T, Nedbal L (2006) Case study of combinatorial imaging: what protocol and what chlorophyll fluorescence image to use when visualizing infection of Arabidopsis thaliana by Pseudomonas syringae? Photosynth Res 90:243–253

    Article  PubMed  Google Scholar 

  • McElrone AJ, Hamilton JG, Krafnick AJ, Aldea M, Knepp RG, DeLucia EH (2010) Combined effects of elevated CO2 and natural climatic variation on leaf spot diseases of redbud and sweetgum trees. Environ Pollut 158:108–114

    Article  CAS  PubMed  Google Scholar 

  • Meng QW, Siebke K, Lippert P, Baur B, Mukherjee U, Weis E (2001) Sink–source transition in tobacco leaves visualized using chlorophyll fluorescence imaging. New Phytol 151:585–595

    Article  CAS  Google Scholar 

  • Meyer S, Saccardy-Adji K, Rizza F, Genty B (2001) Inhibition of photosynthesis by Colletotrichum lindemuthianum in bean leaves determined by chlorophyll fluorescence imaging. Plant Cell Environ 24:947–955

    Article  CAS  Google Scholar 

  • Muller P, Li X-P, Niyogi KK (2001) Non-photochemical quenching. A response to excess light energy. Plant Physiol 125:1558–1566

    Article  CAS  PubMed  Google Scholar 

  • Nedbal L, Brezina V (2002) Complex metabolic oscillations in plants forced by harmonic irradiance. Biophys J 83:2180–2189

    Article  CAS  PubMed  Google Scholar 

  • Nedbal L, Březina V, Adamec F, Štys D, Oja V, Laisk, Govindjee A (2003) Negative feedback regulation is responsible for the non-linear modulation of photosynthetic activity in plants and cyanobacteria exposed to a dynamic light environment. Biochim Biophys Acta Bioenerg 1607:5–17

    Article  CAS  Google Scholar 

  • Oerke EC, Dehne HW (2004) Safeguarding production—losses in major crops and the role of crop protection. Crop Prot 23:275–285

    Article  Google Scholar 

  • Oerke EC, Steiner U, Dehne HW, Lindenthal M (2006) Thermal imaging of cucumber leaves affected by downy mildew and environmental conditions. J Exp Bot 57:2121–2132

    Article  CAS  PubMed  Google Scholar 

  • Oliver RP, Ipcho SVS (2004) Arabidopsis pathology breathes new life into the necrotrophs-vs.-biotrophs classification of fungal pathogens. Mol Plant Pathol 5:347–352

    Article  CAS  PubMed  Google Scholar 

  • Omasa K, Konishi A, Tamura H, Hosoi F (2009) 3D confocal laser scanning microscopy for the analysis of chlorophyll fluorescence parameters of chloroplasts in intact leaf tissues. Plant Cell Physiol 50:90–105

    Article  CAS  PubMed  Google Scholar 

  • Osmond CB, Daley PF, Badger MR, Luttge U (1998) Chlorophyll fluorescence quenching during photosynthetic induction in leaves of Abutilon striatum Dicks. Infected with Abutilon mosaic virus, observed with a field-portable imaging system. Bot Acta 111:390–397

    CAS  Google Scholar 

  • Oxborough K (2004) Imaging of chlorophyll a fluorescence: theoretical and practical aspects of an emerging technique for the monitoring of photosynthetic performance. J Exp Bot 55:1195–1205

    Article  CAS  PubMed  Google Scholar 

  • Pérez-Bueno ML, Ciscato M, vandeVen M, García-Luque I, Valcke R, Barón M (2006) Imaging viral infection: studies on Nicotiana benthamiana plants infected with the pepper mild mottle tobamovirus. Photosynth Res 90:111–123

    Article  PubMed  Google Scholar 

  • Peterson RB, Aylor DE (1995) Chlorophyll fluorescence induction in leaves of Phaseolus vulgaris infected with bean rust (Uromyces appendiculatus). Plant Physiol 108:163–171

    CAS  PubMed  Google Scholar 

  • Pfündel E (1998) Estimating the contribution of photosystem I to total leaf chlorophyll fluorescence. Photosynth Res 56:185–195

    Article  Google Scholar 

  • Pineda M, Soukupová J, Matouš K, Nedbal L, Barón M (2008) Conventional and combinatorial chlorophyll fluorescence imaging of tobamovirus-infected plants. Photosynthetica 46:441–451

    Article  CAS  Google Scholar 

  • Polder G, van der Heijden G, Jalink H, Snel JFH (2007) Correcting and matching time sequence images of plant leaves using penalized likelihood warping and robust point matching. Comput Electron Agric 55:1–15

    Article  Google Scholar 

  • Prokopová J, Špundová M, Sedlářová M, Husičková A, Novotný R, Doležal K, Nauš J, Lebeda A (2010) Photosynthetic responses of lettuce to downy mildew infection and cytokinin treatment. Plant Physiol Biochem 48:716–723

    Article  PubMed  Google Scholar 

  • Quick WP, Stitt M (1989) An examination of factors contributing to non-photochemical quenching of chlorophyll fluorescence in barley leaves. Biochim Biophys Acta Bioenerg 977:287–296

    Article  CAS  Google Scholar 

  • Rodríguez-Moreno L, Pineda M, Soukupová J, Macho AP, Beuzón CR, Barón M, Ramos C (2008) Early detection of bean infection by Pseudomonas syringae in asymptomatic leaf areas using chlorophyll fluorescence imaging. Photosynth Res 96:27–35

    Article  PubMed  Google Scholar 

  • Rolfe S, Scholes J (2002) Extended depth-of-focus imaging of chlorophyll fluorescence from intact leaves. Photosynth Res 72:107–115

    Article  CAS  PubMed  Google Scholar 

  • Scharte J, Schön H, Weis E (2005) Photosynthesis and carbohydrate metabolism in tobacco leaves during an incompatible interaction with Phytophthora nicotianae. Plant Cell Environ 28:1421–1435

    Article  CAS  Google Scholar 

  • Scholes JD, Rolfe SA (1996) Photosynthesis in localised regions of oat leaves infected with crown rust (Puccinia coronata): quantitative imaging of chlorophyll fluorescence. Planta 199:573–582

    Article  CAS  Google Scholar 

  • Scholes JD, Rolfe SA (2009) Chlorophyll fluorescence imaging as tool for understanding the impact of fungal diseases on plant performance: a phenomics perspective. Funct Plant Biol 36:880–892

    Article  Google Scholar 

  • Soukupová J, Smatanová S, Nedbal L, Jegorov A (2003) Plant response to destruxins visualized by imaging of chlorophyll fluorescence. Physiol Plant 118:399–405

    Article  Google Scholar 

  • Swarbrick PJ, Schulze-Lefert P, Scholes JD (2006) Metabolic consequences of susceptibility and resistance (race-specific and broad-spectrum) in barley leaves challenged with powdery mildew. Plant Cell Environ 29:1061–1076

    Article  CAS  PubMed  Google Scholar 

  • Walters DR, McRoberts N, Fitt BDL (2008) Are green islands red herrings? Significance of green islands in plant interactions with pathogens and pests. Biol Rev Camb Philos Soc 83:79–102

    PubMed  Google Scholar 

  • Wolpert TJ, Dunkle LD, Ciuffetti LM (2002) Host-selective toxins and avirulence determinants: what’s in a name? Annu Rev Phytopathol 40:251–285

    Article  CAS  PubMed  Google Scholar 

  • Zou JJ, Rodriguez-Zas S, Aldea M, Li M, Zhu J, Gonzalez DO, Vodkin LO, DeLucia E, Clough SJ (2005) Expression profiling soybean response to Pseudomonas syringae reveals new defense-related genes and rapid HR-specific downregulation of photosynthesis. Mol Plant–Microbe Interact 18:1161–1174

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank colleagues who provided original images for this review.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen Alexander Rolfe.

Additional information

Handling Editor: David Robinson

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rolfe, S.A., Scholes, J.D. Chlorophyll fluorescence imaging of plant–pathogen interactions. Protoplasma 247, 163–175 (2010). https://doi.org/10.1007/s00709-010-0203-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-010-0203-z

Keywords

Navigation