Skip to main content
Log in

Comparison of In Vitro Deposition of Pharmaceutical Aerosols in an Idealized Child Throat with In Vivo Deposition in the Upper Respiratory Tract of Children

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Deposition of drug emitted from two commercially available inhalers was measured in an in vitro child oral airway model and compared to existing in vivo data to examine the ability of the child model to replicate in vivo deposition.

Methods

In vitro deposition of drug from a QVAR® pressurized metered dose inhaler (pMDI) and Pulmicort® Turbuhaler® dry powder inhaler (DPI) in an Idealized Child Throat (1) and downstream filter was measured using UV spectroscopy and simulated realistic breathing profiles. Potential effects of ambient relative humidity ranging from 10% to 90% on deposition were also considered.

Results

In vitro QVAR pMDI deposition in the idealized mouth-throat at 50% RH (39.2 ± 2.3% of delivered dose) compared well (p > 0.05) with in vivo extrathoracic deposition in asthmatic children age 8 to 14 (45.8 ± 12.3%). In vitro Turbuhaler DPI deposition in the idealized mouth-throat at 50% RH (69.0 ± 1.5%) matched in vivo extrathoracic deposition (p > 0.05) in 6 to 16 year old children with cystic fibrosis (70.4 ± 21.2%). The effects of ambient humidity were found to be insignificant for Turbuhaler and minor for QVAR.

Conclusions

The Idealized Child Throat successfully mimics in vivo deposition data in school age children for the inhalers tested, and may provide a standard platform for optimizing pediatric treatment with inhaled pharmaceutical aerosols.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

DPI:

Dry powder inhaler

MMAD:

Mass median aerodynamic diameter

pMDI:

Pressurized metered dose inhaler

RH:

Relative humidity

References

  1. Golshahi L, Finlay WH. An idealized child throat that mimics average pediatric oropharyngeal deposition. Aerosol Sci Technol. 2012;46(5):i–iv.

    Article  CAS  Google Scholar 

  2. Stahlhofen W, Rudolf G, James AC. Intercomparison of experimental regional aerosol deposition data. J Aerosol Med. 1989;2(3):285–308.

    Article  Google Scholar 

  3. Borgström L, Olsson B, Thorsson L. Degree of throat deposition can explain the variability in lung deposition of inhaled drugs. J Aerosol Med. 2006;19(4):473–83.

    Article  PubMed  Google Scholar 

  4. Finlay WH, Martin AR. Recent advances in predictive understanding of respiratory tract deposition. J Aerosol Med Pulm Drug Deliv. 2008;21(2):189–206.

    Article  PubMed  Google Scholar 

  5. Selroos O, Pietinalho A, Riska H. Delivery devices for inhaled asthma medication clinical implications of differences in effectiveness. Clin Immunother. 1996;6(4):273–99.

    Article  Google Scholar 

  6. Ruffin RE, Montgomery JM, Newhouse MT. Site of beta-adrenergic receptors in the respiratory tract. use of fenoterol administered by two methods. Chest. 1978;74(3):256–60.

    Article  CAS  PubMed  Google Scholar 

  7. Zhang L, Prietsch SOM, Mendes AP, Von Groll A, Rocha GP, Carrion L, et al. Inhaled corticosteroids increase the risk of oropharyngeal colonization by streptococcus pneumoniae in children with asthma. Respirology. 2013;18(2):272–7.

    Article  PubMed  Google Scholar 

  8. Singh S, Amin AV, Loke YK. Long-term use of inhaled corticosteroids and the risk of pneumonia in chronic obstructive pulmonary disease. Arch Intern Med. 2009;169(3):219–29.

    Article  PubMed  Google Scholar 

  9. DeHaan WH, Finlay WH. Predicting extrathoracic deposition from dry powder inhalers. J Aerosol Sci. 2004;35(3):309–31.

    Article  CAS  Google Scholar 

  10. Longest PW, Tian G, Walenga RL, Hindle M. Comparing MDI and DPI aerosol deposition using in vitro experiments and a new stochastic individual path (SIP) model of the conducting airways. Pharm Res. 2012;29(6):1670–88.

    Article  CAS  PubMed  Google Scholar 

  11. Cheng YS, Fu CS, Yazzie D, Zhou Y. Respiratory deposition patterns of salbutamol pMDI with CFC and HFA-134a formulations in a human airway replica. J Aerosol Med. 2001;14(2):255–66.

    Article  CAS  PubMed  Google Scholar 

  12. Ehtezazi T, Southern KW, Allanson D, Jenkinson I, O’Callaghan C. Suitability of the upper airway models obtained from MRI studies in simulating drug lung deposition from inhalers. Pharm Res. 2005;22(1):166–70.

    Article  CAS  PubMed  Google Scholar 

  13. Finlay WH, Golshahi L, Noga M, Flores-Mir C. Choosing 3-D mouth-throat dimensions: A rational merging of medical imaging and aerodynamics. Respiratory Drug Delivery 2010. 2010;1:185–94.

    Google Scholar 

  14. Byron PR, Hindle M, Lange CF, Longest PW, McRobbie D, Oldham MJ, et al. In vivo-in vitro correlations: predicting pulmonary drug deposition from pharmaceutical aerosols. J Aerosol Med Pulm Drug Deliv. 2010;23 Suppl 2:S59–69.

    CAS  PubMed  Google Scholar 

  15. Zhang Y, Gilbertson K, Finlay WH. In vivo-in vitro comparison of deposition in three mouth-throat models with qvar® and turbuhaler® inhalers. J Aerosol Med. 2007;20(3):227–35.

    Article  CAS  PubMed  Google Scholar 

  16. Zhou Y, Sun J, Cheng Y. Comparison of deposition in the USP and physical mouth-throat models with solid and liquid particles. J Aerosol Med Pulm Drug Deliv. 2011;24(6):277–84.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Stapleton KW, Guentsch E, Hoskinson MK, Finlay WH. On the suitability of k–ε turbulence modeling for aerosol deposition in the mouth and throat: a comparison with experiment. J Aerosol Sci. 2000 6;31(6):739–49.

    Google Scholar 

  18. Grgic B, Finlay WH, Heenan AF. Regional aerosol deposition and flow measurements in an idealized mouth and throat. J Aerosol Sci. 2004;35(1):21–32.

    Article  CAS  Google Scholar 

  19. Delvadia R, Worth Longest P, Byron PR. In vitro tests for aerosol deposition. I: Scaling a physical model of the upper airways to predict drug deposition variation in normal humans. J Aerosol Med Pulm Drug Deliv. 2012;25(1):32–40.

    Article  CAS  PubMed  Google Scholar 

  20. Delvadia R, Hindle M, Worth Longest P, Byron PR. In vitro tests for aerosol deposition II: IVIVCs for different dry powder inhalers in normal adults. J Aerosol Med Pulm Drug Deliv. 2013;26(3):138–44.

    Article  CAS  PubMed  Google Scholar 

  21. Ahrens RC. The role of the MDI and DPI in pediatric patients: “children are not just miniature adults”. Respir Care. 2005;50(10):1323–8.

    PubMed  Google Scholar 

  22. Macleod DB, Habib AS, Ikeda K, Spyker DA, Cassella JV, Ho KY, et al. Inhaled fentanyl aerosol in healthy volunteers: Pharmacokinetics and pharmacodynamics. Anesth Analg. 2012;115(5):1071–7.

    Article  CAS  PubMed  Google Scholar 

  23. Corcoran TE, Venkataramanan R, Hoffman RM, George MP, Petrov A, Richards T, et al. Systemic delivery of atropine sulfate by the microdose dry-powder inhaler. J Aerosol Med Pulm Drug Deliv. 2013;26(1):46–55.

    Article  CAS  PubMed  Google Scholar 

  24. Patton JS, Bukar JG, Eldon MA. Clinical pharmacokinetics and pharmacodynamics of inhaled insulin. Clin Pharmacokinet. 2004;43(12):781–801.

    Article  CAS  PubMed  Google Scholar 

  25. Devadason SG. Recent advances in aerosol therapy for children with asthma. J Aerosol Med. 2006;19(1):61–6.

    Article  CAS  PubMed  Google Scholar 

  26. Devadason SG, Everard ML, MacEarlan C, Roller C, Summers QA, Swift P, et al. Lung deposition from the turbuhaler® in children with cystic fibrosis. Eur Respir J. 1997;10(9):2023–8.

    Article  CAS  PubMed  Google Scholar 

  27. Wildhaber JH, Devadason SG, Wilson JM, Roller C, Lagana T, Borgström L, et al. Lung deposition of budesonide from turbuhaler in asthmatic children. Eur J Pediatr. 1998;157(12):1017–22.

    Article  CAS  PubMed  Google Scholar 

  28. Devadason SG, Huang T, Walker S, Troedson R, Le Souëf PN. Distribution of technetium-99m-labelled QVAR™ delivered using an autohaler™ device in children. Eur Respir J. 2003;21(6):1007–11.

    Article  CAS  PubMed  Google Scholar 

  29. Roller CM, Zhang G, Troedson RG, Leach CL, Le Souëf PN, Devadason SG. Spacer inhalation technique and deposition of extrafine aerosol asthmatic children. Eur Respir J. 2007;29(2):299–306.

    Article  CAS  PubMed  Google Scholar 

  30. Erzinger S, Schueepp KG, Brooks-Wildhaber J, Devadason SG, Wildhaber JH. Facemasks and aerosol delivery in vivo. J Aerosol Med. 2007;20 Suppl 1:S78–83.

    Article  CAS  PubMed  Google Scholar 

  31. Martin AR, Finlay WH. The effect of humidity on the size of particles delivered from metered-dose inhalers. Aerosol Sci Tech. 2005;39(4):283–9.

    Article  CAS  Google Scholar 

  32. Kwok PCL, Chan H-K. Effect of relative humidity on the electrostatic charge properties of dry powder inhaler aerosols. Pharm Res. 2008;25(2):277–88.

    Article  CAS  PubMed  Google Scholar 

  33. Shemirani FM, Hoe S, Lewis D, Church T, Vehring R, Finlay WH. In vitro investigation of the effect of ambient humidity on regional delivered dose with solution and suspension MDIs. J Aerosol Med Pulm Drug Deliv. 2013;26(4):215–22.

    Article  CAS  PubMed  Google Scholar 

  34. Corcoran TE, Shortall BP, Kim IK, Meza MP, Chigier N. Aerosol drug delivery using heliox and nebulizer reservoirs: Results from an MRI-based pediatric model. J Aerosol Med. 2003;16(3):263–71.

    Article  CAS  PubMed  Google Scholar 

  35. Golshahi L, Noga ML, Thompson RB, Finlay WH. In vitro deposition measurement of inhaled micrometer-sized particles in extrathoracic airways of children and adolescents during nose breathing. J Aerosol Sci. 2011;42(7):474–88.

    Article  CAS  Google Scholar 

  36. Golshahi L, Noga ML, Finlay WH. Deposition of inhaled micrometer-sized particles in oropharyngeal airway replicas of children at constant flow rates. J Aerosol Sci. 2012;49:21–31.

    Article  CAS  Google Scholar 

  37. Golshahi L, Vehring R, Noga ML, Finlay WH. In vitro deposition of micrometer-sized particles in the extrathoracic airways of children during tidal oral breathing. J Aerosol Sci. 2013 3;57(0):14–21.

    Google Scholar 

  38. Janssens HM, De Jongste JC, Fokkens WJ, Robben SGF, Wouters K, Tiddens HAWM. The sophia anatomical infant nose-throat (saint) model: A valuable tool to study aerosol deposition in infants. J Aerosol Med. 2001;14(4):433–41.

    Article  CAS  PubMed  Google Scholar 

  39. Storey-Bishoff J, Noga M, Finlay WH. Deposition of micrometer-sized aerosol particles in infant nasal airway replicas. J Aerosol Sci. 2008;39(12):1055–65.

    Article  CAS  Google Scholar 

  40. Minocchieri S, Burren JM, Bachmann MA, Stern G, Wildhaber J, Buob S, et al. Development of the premature infant nose throat-model (PrINT-model)-an upper airway replica of a premature neonate for the study of aerosol delivery. Pediatr Res. 2008;64(2):141–6.

    Article  CAS  PubMed  Google Scholar 

  41. Golshahi L, Finlay WH, Olfert JS, Thompson RB, Noga ML. Deposition of inhaled ultrafine aerosols in replicas of nasal airways of infants. Aerosol Sci Tech. 2010;44(9):741–52.

    Article  CAS  Google Scholar 

  42. Laube BL, Sharpless G, Shermer C, Sullivan V, Powell K. Deposition of dry powder generated by solovent in sophia anatomical infant nose-throat (SAINT) model. Aerosol Sci Tech. 2012;46(5):514–20.

    Article  CAS  Google Scholar 

  43. Bickmann D, Wachtel H, Kroeger R, Langguth P. Examining inhaler performance using a child’s throat model. Respiratory Drug Delivery. 2008;2:565–70.

    Google Scholar 

  44. Wachtel H, Bickmann D, Breitkeutz J, Langguth P. Can pediatric throat models and air flow profiles improve our dose finding strategy? Respiratory Drug Delivery. 2010;1:195–204.

    Google Scholar 

  45. Below A, Bickmann D, Breitkreutz J. Assessing the performance of two dry powder inhalers in preschool children using an idealized pediatric upper airway model. Int J Pharm. 2013;444(1–2):169–74.

    Article  CAS  PubMed  Google Scholar 

  46. Leach CL, Davidson PJ, Hasselquist BE, Boudreau RJ. Influence of particle size and patient dosing technique on lung deposition of HFA-beclomethasone from a metered dose inhaler. J Aerosol Med. 2005;18(4):379–85.

    Article  CAS  PubMed  Google Scholar 

  47. Arshad H, Luyt D, Goodwin A, Jones A, Hide D, Williams I. Sodium cromoglycate via inhaler and autohaler. Respir Med. 1993;87(4):299–302.

    Article  CAS  PubMed  Google Scholar 

  48. Stocks J, Quanjer PH. Reference values for residual volume, functional residual capacity and total lung capacity: ATS workshop on lung volume measurements official statement of the european respiratory society. Eur Respir J. 1995;8(3):492–506.

    Article  CAS  PubMed  Google Scholar 

  49. De Boer AH, Gjaltema D, Hagedoorn P. Inhalation characteristics and their effects on in vitro drug delivery front dry powder inhalers part 2: Effect of peak flow rate (PIFR) and inspiration time on the in vitro drug release from three different types of commercial dry powder inhalers. Int J Pharm. 1996;138(1):45–56.

    Article  Google Scholar 

  50. De Boer AH, Bolhuis GK, Gjaltema D, Hagedoorn P. Inhalation characteristics and their effects on in vitro drug delivery from dry powder inhalers. part 3: The effect of flow increase rate (FIR) on the in vitro drug release from the pulmicort 200 turbuhaler. Int J Pharm. 1997;153(1):67–77.

    Article  Google Scholar 

  51. Everard ML, Devadason SG, Le Souëf PN. Flow early in the inspiratory manoeuvre affects the aerosol particle size distribution from a turbuhaler. Respir Med. 1997;91(10):624–8.

    Article  CAS  PubMed  Google Scholar 

  52. Kamin WES, Genz T, Roeder S, Scheuch G, Trammer T, Juenemann R, et al. Mass output and particle size distribution of glucocorticosteroids emitted from different inhalation devices depending on various inspiratory parameters. J Aerosol Med. 2002;15(1):65–73.

    Article  CAS  PubMed  Google Scholar 

  53. Martin GP, Marriott C, Zeng X-M. Influence of realistic inspiratory flow profiles on fine particle fractions of dry powder aerosol formulations. Pharm Res. 2007;24(2):361–9.

    Article  CAS  PubMed  Google Scholar 

  54. Tiddens HA, Geller DE, Challoner P, Speirs RJ, Kesser KC, Overbeek SE, et al. Effect of dry powder inhaler resistance on the inspiratory flow rates and volumes of cystic fibrosis patients of six years and older. J Aerosol Med. 2006;19(4):456–65.

    Article  CAS  PubMed  Google Scholar 

  55. Hindle M, Byron PR. Dose emissions from marketed dry powder inhalers. Int J Pharm. 1995;116(2):169–77.

    Article  CAS  Google Scholar 

  56. Steckel H, Müller BW. In vitro evaluation of dry powder inhalers I: Drug deposition of commonly used devices. Int J Pharm. 1997;154(1):19–29.

    Article  CAS  Google Scholar 

  57. Leach CL, Davidson PJ, Boudreau RJ. Improved airway targeting with the CFC-free HFA-beclomethasone metered- dose inhaler compared with CFC-beclomethasone. Eur Respir J. 1998;12(6):1346–53.

    Article  CAS  PubMed  Google Scholar 

  58. Finlay WH, Gehmlich MG. Inertial sizing of aerosol inhaled from two dry powder inhalers with realistic breath patterns versus constant flow rates. Int J Pharm. 2000;210(1–2):83–95.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments and Disclosures

CA Ruzycki gratefully acknowledges funding from the Natural Sciences and Engineering Research Council of Canada, The Lung Association Alberta & NWT, and Alberta Innovates – Technology Futures.

The laboratory assistance of Helena Orzanska in performing UV spectroscopy is greatly appreciated.

The assistance of the staff of the machine shop at the Department of Mechanical Engineering, University of Alberta in developing the metal version of the Idealized Child Throat is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Warren H. Finlay.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ruzycki, C.A., Golshahi, L., Vehring, R. et al. Comparison of In Vitro Deposition of Pharmaceutical Aerosols in an Idealized Child Throat with In Vivo Deposition in the Upper Respiratory Tract of Children. Pharm Res 31, 1525–1535 (2014). https://doi.org/10.1007/s11095-013-1258-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-013-1258-2

KEY WORDS

Navigation