Skip to main content
Log in

Brain Disposition and Catalepsy After Intranasal Delivery of Loxapine: Role of Metabolism in PK/PD of Intranasal CNS Drugs

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

To elucidate the role of metabolism in the pharmacokinetics and pharmacodynamics of intranasal loxapine in conscious animals.

Methods

At pre-determined time points after intranasal or oral loxapine administration, levels of loxapine, loxapine metabolites, and neurotransmitters in rat brain were quantified after catalepsy assessments (block test and paw test). Cataleptogenicity of loxapine was also compared with its metabolites.

Results

Intranasally administered loxapine was efficiently absorbed into systemic circulation followed by entering brain, with tmax ≤15 min in all brain regions. Oral route delivered minimal amounts of loxapine to plasma and brain. Brain AUC0–240min values of 7-hydroxy-loxapine were similar after intranasal and oral administration. Intranasal loxapine tended to induce less catalepsy than oral loxapine, although statistical significance was not reached. The catalepsy score was positively and significantly correlated with the striatal concentration of 7-hydroxy-loxapine, but not with loxapine. 7-hydroxy-loxapine was more cataleptogenic than loxapine, while the presence of loxapine tended to reduce rather than intensify 7-hydroxy-loxapine-induced catalepsy. The increases in striatal dopamine turnover were comparable after intranasal and oral loxapine administration.

Conclusions

The metabolite 7-hydroxy-loxapine, but not loxapine, was the main contributor to the catalepsy observed after intranasal and oral loxapine treatment. Intranasal route could effectively deliver loxapine to brain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

3-MT:

3-methoxytyramine

5-HIAA:

5-hydroxyindole-3-acetic acid

5-HT:

Serotonin

7-OH-amoxapine:

7-hydroxy-amoxapine

7-OH-loxapine:

7-hydroxy-loxapine

8-OH-amoxapine:

8-hydroxy-amoxapine

8-OH-loxapine:

8-hydroxy-loxapine

AUC:

area under the curve

Cmax :

maximum concentration

CNS:

central nervous system

CYP:

cytochrome P450

DA:

dopamine

DOPAC:

3,4-dihydroxyphenylacetic acid

HVA:

homovanillic acid

IM:

intramuscular

IV:

intravenous

PD:

pharmacodynamics

PK:

pharmacokinetics

t1/2 :

half life

tmax :

time to maximum concentration

REFERENCES

  1. Wong YC, Zuo Z. Intranasal delivery–modification of drug metabolism and brain disposition. Pharm Res. 2010;27(7):1208–23.

    Google Scholar 

  2. Wong YC, Qian S, Zuo Z. Regioselective biotransformation of CNS drugs and its clinical impact on adverse drug reactions. Expert Opin Drug Metab Toxicol. 2012;8(7):833–54.

    Article  PubMed  CAS  Google Scholar 

  3. Midha KK, Hubbard JW, McKay G, Hawes EM, Hsia D. The role of metabolites in a bioequivalence study 1: loxapine, 7-hydroxyloxapine and 8-hydroxyloxapine. Int J Clin Pharmacol Ther Toxicol. 1993;31(4):177–83.

    PubMed  CAS  Google Scholar 

  4. Wong YC, Wo SK, Zuo Z. Investigation of the disposition of loxapine, amoxapine and their hydroxylated metabolites in different brain regions, CSF and plasma of rat by LC–MS/MS. J Pharm Biomed Anal. 2012;58(1):83–93.

    Google Scholar 

  5. Richelson E. Receptor pharmacology of neuroleptics: relation to clinical effects. J Clin Psychiatry. 1999;60 Suppl 10:5–14.

    PubMed  CAS  Google Scholar 

  6. Pierre JM. Extrapyramidal symptoms with atypical antipsychotics: incidence, prevention and management. Drug Saf. 2005;28(3):191–208.

    Article  PubMed  CAS  Google Scholar 

  7. Porsolt RD, Moser PC, Castagné V. Behavioral indices in antipsychotic drug discovery. J Pharmacol Exp Ther. 2010;333(3):632–8.

    Article  PubMed  CAS  Google Scholar 

  8. Hoffman DC, Donovan H. Catalepsy as a rodent model for detecting antipsychotic drugs with extrapyramidal side effect liability. Psychopharmacology (Berl). 1995;120(2):128–33.

    Article  CAS  Google Scholar 

  9. Wadenberg MLG, Kapur S, Soliman A, Jones C, Vaccarino F. Dopamine D2 receptor occupancy predicts catalepsy and the suppression of conditioned avoidance response behaviour in rats. Psychopharmacology (Berl). 2000;150(4):422–9.

    Article  CAS  Google Scholar 

  10. Kumar M, Misra A, Babbar AK, Mishra AK, Mishra P, Pathak K. Intranasal nanoemulsion based brain targeting drug delivery system of risperidone. Int J Pharm. 2008;358(1–2):285–91.

    Article  PubMed  CAS  Google Scholar 

  11. Kumar M, Misra A, Mishra AK, Mishra P, Pathak K. Mucoadhesive nanoemulsion-based intranasal drug delivery system of olanzapine for brain targeting. J Drug Target. 2008;16(10):806–14.

    Article  PubMed  CAS  Google Scholar 

  12. Patel S, Chavhan S, Soni H, Babbar AK, Mathur R, Mishra AK, et al. Brain targeting of risperidone-loaded solid lipid nanoparticles by intranasal route. J Drug Target. 2011;19(6):468–74.

    Article  PubMed  CAS  Google Scholar 

  13. Illum L. Nasal delivery. The use of animal models to predict performance in man. J Drug Target. 1996;3(6):427–42.

    Article  PubMed  CAS  Google Scholar 

  14. Hirai S, Yashiki T, Matsuzawa T, Mima H. Absorption of drugs from the nasal mucosa of rat. Int J Pharm. 1981;7(4):317–25.

    Article  CAS  Google Scholar 

  15. Mayor SH, Illum L. Investigation of the effect of anaesthesia on nasal absorption of insulin in rats. Int J Pharm. 1997;149(1):123–9.

    Article  CAS  Google Scholar 

  16. Yang Z, Huang Y, Gan G, Sawchuk RJ. Microdialysis evaluation of the brain distribution of stavudine following intranasal and intravenous administration to rats. J Pharm Sci. 2005;94(7):1577–88.

    Article  PubMed  CAS  Google Scholar 

  17. Sanberg PR, Martinez R, Shytle RD, Cahill DW. The catalepsy test: is a standardized method possible? In: Sanberg PR, Ossenkopp KP, Kavaliers M, editors. Motor activity and movement disorders Totowa. NJ: Humana Press; 1996. p. 197–211.

    Chapter  Google Scholar 

  18. Sanberg PR, Bunsey MD, Giordano M, Norman AB. The catalepsy test: its ups and downs. Behav Neurosci. 1988;102(5):748–59.

    Article  PubMed  CAS  Google Scholar 

  19. Vrijmoed-De Vries MC, Tonissen H, Cools AR. The relationship between hindlimb disturbances, forelimb disturbances and catelepsy after increasing doses of muscimol injected into the striatal-pallidal complex. Psychopharmacology (Berl). 1987;92(1):73–7.

    Article  CAS  Google Scholar 

  20. Ellenbroek BA, Peeters BW, Honig WM, Cools AR. The paw test: a behavioral paradigm for differentiating between classical and atypical neuroleptic drugs. Psychopharmacology (Berl). 1987;93(3):343–8.

    Article  CAS  Google Scholar 

  21. Costall B, Naylor RJ. Neuroleptic and non neuroleptic catalepsy. Arzneimittelforschung. 1973;23:674–83.

    PubMed  CAS  Google Scholar 

  22. Stille G, Lauener H. Pharmacology of catatonigenic substances. 1. Correlation between neuroleptic catalepsy and the homovanillic acid level in rat corpus striatum. Arzneimittelforschung. 1971;21(2):252–5.

    CAS  Google Scholar 

  23. Tareke E, Bowyer JF, Doerge DR. Quantification of rat brain neurotransmitters and metabolites using liquid chromatography/electrospray tandem mass spectrometry and comparison with liquid chromatography/electrochemical detection. Rapid Commun Mass Spectrom. 2007;21(23):3898–904.

    Article  PubMed  CAS  Google Scholar 

  24. Diop L, Gottberg E, Briere R, Grondin L, Reader TA. Distribution of dopamine D1 receptors in rat cortical areas, neostriatum, olfactory bulb and hippocampus in relation to endogenous dopamine contents. Synapse. 1988;2(4):395–405.

    Google Scholar 

  25. Ereshefsky L. Pharmacologic and pharmacokinetic considerations in choosing an antipsychotic. J Clin Psychiatry. 1999;60 Suppl 10:20–30.

    PubMed  CAS  Google Scholar 

  26. Narige T, Mizumura M, Okuizumi N, Matsumoto K, Furukawa Y, Hondo T. Study of the absorption, distribution, metabolism, and excretion of amoxapine in rats. Yakuri to Chiryo. 1981;9(5):1885–92.

    CAS  Google Scholar 

  27. Furubayashi T, Kamaguchi A, Kawaharada K, Masaoka Y, Kataoka M, Yamashita S, et al. Evaluation of the contribution of the nasal cavity and gastrointestinal tract to drug absorption following nasal application to rats. Biol Pharm Bull. 2007;30(3):608–11.

    Article  PubMed  CAS  Google Scholar 

  28. Tuk B, Van Oostenbruggen MF, Herben VMM, Mandema JW, Danhof M. Characterization of the pharmacodynamic interaction between parent drug and active metabolite in vivo: midazolam and alpha-OH-midazolam. J Pharmacol Exp Ther. 1999;289(2):1067–74.

    Google Scholar 

  29. Burstein S, Hunter SA, Latham V, Renzulli L. A major metabolite of Δ1-tetrahydrocannabinol reduces its cataleptic effect in mice. Experientia. 1987;43(4):402–3.

    Article  PubMed  CAS  Google Scholar 

  30. Bun SS, Voeurng V, Bun H. Interspecies variability and drug interactions of loxapine metabolism in liver microsomes. Eur J Drug Metab Pharmacokinet. 2003;28(4):295–300.

    Article  PubMed  CAS  Google Scholar 

  31. Burki HR, Fischer R, Hunziker F. Dibenzo-epines: effect of the basic side-chain on neuroleptic activity. Eur J Med Chem. 1978;13(5):479–85.

    Google Scholar 

  32. Seeman P. Targeting the dopamine D2 receptor in schizophrenia. Expert Opin Ther Targets. 2006;10(4):515–31.

    Article  PubMed  CAS  Google Scholar 

  33. Midha KK, Rawson MJ, Hubbard JW. The role of metabolites in bioequivalence. Pharm Res. 2004;21(8):1331–44.

    Article  PubMed  CAS  Google Scholar 

  34. Paprocki J, Versiani M. A double-blind comparison between loxapine and haloperidol by parenteral route in acute schizophrenia. Curr Ther Res Clin Exp. 1977;21(1):80–100.

    PubMed  CAS  Google Scholar 

  35. Simpson GM, Cooper TB, Lee JH, Young MA. Clinical and plasma level characteristics of intramuscular and oral loxapine. Psychopharmacology (Berl). 1978;56(2):225–32.

    Article  CAS  Google Scholar 

  36. Al-Suwayeh SA, Tebbett IR, Wielbo D, Brazeau GA. In vitro-in vivo myotoxicity of intramuscular liposomal formulations. Pharm Res. 1996;13(9):1384–8.

    Article  PubMed  CAS  Google Scholar 

  37. Chakrabarti A, Bagnall A, Chue P, Fenton M, Palaniswamy V, Wong W, et al. Loxapine for schizophrenia. Cochrane Database Syst Rev. 2007;4, CD001943.

    PubMed  Google Scholar 

  38. Sztrymf B, Chevrel G, Bertrand F, Margetis D, Hurel D, Ricard J, et al. Beneficial effects of loxapine on agitation and breathing patterns during weaning from mechanical ventilation. Crit Care. 2010;14(3).

  39. Krieger D, Hansen K, McDermott C, Matthews R, Mitchell R, Bollegala N, et al. Loxapine versus olanzapine in the treatment of delirium following traumatic brain injury. NeuroRehabilitation. 2003;18(3):205–8.

    PubMed  Google Scholar 

  40. Reinblatt SP, Abanilla PK, Jummani R, Coffey B. Loxapine treatment in an autistic child with aggressive behavior: therapeutic challenges. J Child Adolesc Psychopharmacol. 2006;16(5):639–43.

    Article  PubMed  Google Scholar 

  41. Carlyle W, Ancill RJ, Sheldon L. Aggression in the demented patient: a double-blind study of loxapine versus haloperidol. Int Clin Psychopharmacol. 1993;8(2):103–8.

    Article  PubMed  CAS  Google Scholar 

  42. Hale RL, Munzar P, Rabinowitz JD, inventors. Alexza Molecular Delivery Corporation, USA, assignee. Method for treating pain with loxapine and amoxapine. Patent Application Country: Application: US; Patent Country: US; Priority Application Country: US patent 2004102434. 2004 0527; Patent Application Date: 20031120.; Priority Application Date: 20021126.

  43. Kimishima K, Sakamoto T, Yamasaki M, Tanabe K, Amano Y. Central nervous actions of new neuroleptics, dibenzoazepine derivatives. Yonago Igaku Zasshi. 1969;20(6):525–36.

    CAS  Google Scholar 

  44. Stefanova D. Cloxazepine—neuropharmacological studies. Eksp Med Morfol. 1981;20(4):208–13.

    PubMed  CAS  Google Scholar 

  45. Chen YW, Huang KL, Liu SY, Tzeng JI, Chu KS, Lin MT, et al. Intrathecal tri-cyclic antidepressants produce spinal anesthesia. Pain. 2004;112(1–2):106–12.

    Article  PubMed  CAS  Google Scholar 

  46. Matsudaira K, Seichi A, Yamazaki T, Kishimoto J, Takeshita K, Nakamura K. Efficacy of tricyclic antidepressant for somatoform pain disorders with chronic lower back and leg pain. J Lumbar Spine Disord. 2004;10(1):155–62.

    Article  Google Scholar 

  47. Lochhead JJ, Thorne RG. Intranasal delivery of biologics to the central nervous system. Adv Drug Deliv Rev. 2012;64(7):614–28.

    Article  PubMed  CAS  Google Scholar 

  48. Akerman S, Holland PR, Goadsby PJ. Diencephalic and brainstem mechanisms in migraine. Nat Rev Neurosci. 2011;12(10):570–84.

    Article  PubMed  CAS  Google Scholar 

  49. Johnson NJ, Hanson LR, Frey II WH. Trigeminal pathways deliver a low molecular weight drug from the nose to the brain and orofacial structures. Mol Pharm. 2010;7(3):884–93.

    Article  PubMed  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

CUHK Direct Grant 4450272 and General Research Fund CUHK 480809.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhong Zuo.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 379 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wong, Y.C., Zuo, Z. Brain Disposition and Catalepsy After Intranasal Delivery of Loxapine: Role of Metabolism in PK/PD of Intranasal CNS Drugs. Pharm Res 30, 2368–2384 (2013). https://doi.org/10.1007/s11095-013-1080-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-013-1080-x

KEY WORDS

Navigation