Skip to main content

Advertisement

Log in

Semi-Mechanistic Model for Neutropenia after High Dose of Chemotherapy in Breast Cancer Patients

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

To describe the absolute neutrophil counts (ANC) profile in breast cancer patients receiving high-dose of chemotherapy and peripheral blood stem-cells (PBSC) transplantation.

Methods

Data from 41 subjects receiving cyclophosphamide, thiotepa and carboplatin were used to develop the ANC model consisting of a drug-sensitive progenitor cell compartment, linked to the peripheral blood compartment, through three transition compartments. PBSC were incorporated into the first transit compartment following a zero-order process, k in , and the rebound effect was explained by a feedback mechanism. A ‘kinetics of drug action’ model was used to quantify the HDC effect on the progenitor cells according to a linear function, with a slope (α).

Results

The typical of the ANC at baseline (Circ 0 ), mean transit time (MTT), feedback parameter (γ), k in and α were estimated to be 5,610·106/L, 3.25 days, 0.145, 0.954 cell/kg/day and 2.50 h/U, respectively. rHuG-CSF shortens the MTT by 92% and increases the mitotic activity by 120%. Bootstrap analysis, visual predictive check and numerical predictive checks evidenced accurate prediction of the ANC nadir, time to ANC nadir and time to grade 4 neutropenia recovery.

Conclusion

The time course of neutropenia following high-dose of chemotherapy and PBSC transplantation was accurately predicted. Higher amount of CD34+ cells in the PBSC transplantation and earlier administration rHuG-CSF were associated with faster haematological recovery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

REFERENCES

  1. Antman K, Ayash L, Elias A, Wheeler C, Hunt M, Eder JP, et al. A phase II study of high-dose cyclophosphamide, thiotepa, and carboplatin with autologous marrow support in women with measurable advanced breast cancer responding to standard-dose therapy. J Clin Oncol. 1992;10:102–10.

    PubMed  CAS  Google Scholar 

  2. Armitage JO. Bone marrow transplantation. N Engl J Med. 1994;330:827–38. doi:10.1056/NEJM199403243301206.

    Article  PubMed  CAS  Google Scholar 

  3. Attal M, Harousseau JL, Stoppa AM, Sotto JJ, Fuzibet JG, Rossi JF, et al. A prospective, randomized trial of autologous bone marrow transplantation and chemotherapy in multiple myeloma. Intergroupe Francais du Myelome. N Engl J Med. 1996;335:91–7. doi:10.1056/NEJM199607113350204.

    Article  PubMed  CAS  Google Scholar 

  4. Attal M, Huguet F, Schlaifer D, Payen C, Laroche M, Fournie B, et al. Intensive combined therapy for previously untreated aggressive myeloma. Blood. 1992;79:1130–6.

    PubMed  CAS  Google Scholar 

  5. Beal SL, Sheiner LB. NONMEM users guides. Hanover (MD): GloboMax, LLC.; 1992.

    Google Scholar 

  6. Beyer J, Schwella N, Zingsem J, Strohscheer I, Schwaner I, Oettle H, et al. Hematopoietic rescue after high-dose chemotherapy using autologous peripheral-blood progenitor cells or bone marrow: a randomized comparison. J Clin Oncol. 1995;13:1328–35.

    PubMed  CAS  Google Scholar 

  7. Dale DC, Liles WC, Llewellyn C, Price TH. Effects of granulocyte-macrophage colony-stimulating factor (GM-CSF) on neutrophil kinetics and function in normal human volunteers. Am J Hematol. 1998;57:7–15. doi:10.1002/(SICI)1096-8652(199801)57:1<7::AID-AJH2>3.0.CO;2-0.

    Article  PubMed  CAS  Google Scholar 

  8. de Jonge ME, Huitema AD, Rodenhuis S, Beijnen JH. Integrated population pharmacokinetic model of both cyclophosphamide and thiotepa suggesting a mutual drug-drug interaction. J Pharmacokinet Pharmacodyn. 2004;31:135–56. doi:10.1023/B:JOPA.0000034405.03895.c2.

    Article  PubMed  Google Scholar 

  9. Dekker A, Bulley S, Beyene J, Dupuis LL, Doyle JJ, Sung L. Meta-analysis of randomized controlled trials of prophylactic granulocyte colony-stimulating factor and granulocyte-macrophage colony-stimulating factor after autologous and allogeneic stem cell transplantation. J Clin Oncol. 2006;24:5207–15. doi:10.1200/JCO.2006.06.1663.

    Article  PubMed  CAS  Google Scholar 

  10. Dillman RO, Barth NM, Nayak SK, DeLeon C, O’Connor A, Morrelli L. High-dose chemotherapy with autologous stem cell rescue in breast cancer. Breast Cancer Res Treat. 1996;37:277–89. doi:10.1007/BF01806509.

    Article  PubMed  CAS  Google Scholar 

  11. Elias AD, Ayash L, Anderson KC, Hunt M, Wheeler C, Schwartz G, et al. Mobilization of peripheral blood progenitor cells by chemotherapy and granulocyte-macrophage colony-stimulating factor for hematologic support after high-dose intensification for breast cancer. Blood. 1992;79:3036–44.

    PubMed  CAS  Google Scholar 

  12. Ette EI. Stability and performance of a population pharmacokinetic model. J Clin Pharmacol. 1997;37:486–95.

    PubMed  CAS  Google Scholar 

  13. Ferreri AJ, Crocchiolo R, Assanelli A, Govi S, Reni M. High-dose chemotherapy supported by autologous stem cell transplantation in patients with primary central nervous system lymphoma: facts and opinions. Leuk Lymphoma. 2008;49:2042–7. doi:10.1080/10428190802381238.

    Article  PubMed  CAS  Google Scholar 

  14. Friberg LE, Henningsson A, Maas H, Nguyen L, Karlsson MO. Model of chemotherapy-induced myelosuppression with parameter consistency across drugs. J Clin Oncol. 2002;20:4713–21. doi:10.1200/JCO.2002.02.140.

    Article  PubMed  Google Scholar 

  15. Gabrielsson J, Jusko WJ, Alari L. Modeling of dose-response-time data: four examples of estimating the turnover parameters and generating kinetic functions from response profiles. Biopharm Drug Dispos. 2000;21:41–52. doi:10.1002/1099-081X(200003) 21:2<41::AID-BDD217>3.0.CO;2-D.

    Article  PubMed  CAS  Google Scholar 

  16. Gill P, Litzow M, Buckner J, Arndt C, Moynihan T, Christianson T, et al. High-dose chemotherapy with autologous stem cell transplantation in adults with recurrent embryonal tumors of the central nervous system. Cancer. 2008;112:1805–11. doi:10.1002/cncr.23362.

    Article  PubMed  CAS  Google Scholar 

  17. Greb A, Bohlius J, Schiefer D, Schwarzer G, Schulz H, Engert A. 2008. High-dose chemotherapy with autologous stem cell transplantation in the first line treatment of aggressive non-Hodgkin lymphoma (NHL) in adults. Cochrane Database Syst Rev. CD004024

  18. Gianni AM, Siena S, Bregni M, Tarella C, Stern AC, Pileri A, et al. Granulocyte-macrophage colony-stimulating factor to harvest circulating haemopoietic stem cells for autotransplantation. Lancet. 1989;2:580–5. doi:10.1016/S0140-6736(89) 90711-3.

    Article  PubMed  CAS  Google Scholar 

  19. Grigg A, Begley CG, Juttner CA, Szer J, To LB, Maher D, et al. Effect of peripheral blood progenitor cells mobilised by filgrastim (G-CSF) on platelet recovery after high-dose chemotherapy. Bone Marrow Transplant. 1993;11(Suppl 2):23–9.

    PubMed  Google Scholar 

  20. Hillner BE, Smith TJ, Desch CE. Cost-effective use of autologous bone marrow transplantation: few answers, many questions, and suggestions for future assessments. Pharmacoeconomics. 1994;6:114–26. doi:10.2165/00019053-199406020-00004.

    Article  PubMed  CAS  Google Scholar 

  21. Hing J, Perez-Ruixo JJ, Stuyckens K, Soto-Matos A, Lopez-Lazaro L, Zannikos P. Mechanism-based pharmacokinetic/pharmacodynamic meta-analysis of trabectedin (ET-743, Yondelis®) induced neutropenia. Clin Pharmacol Ther. 2008;83:130–43. doi:10.1038/sj.clpt.6100259.

    Article  PubMed  CAS  Google Scholar 

  22. Jacqmin P, Snoeck E, van Schaick EA, Gieschke R, Pillai P, Steimer JL, et al. Modelling response time profiles in the absence of drug concentrations: definition and performance evaluation of the K-PD model. J Pharmacokinet Pharmacodyn. 2007;34:57–85. doi:10.1007/s10928-006-9035-z.

    Article  PubMed  CAS  Google Scholar 

  23. Joerger M, Huitema AD, Richel DJ, Dittrich C, Pavlidis N, Briasoulis E, et al. Population pharmacokinetics and pharmacodynamics of paclitaxel and carboplatin in ovarian cancer patients: a study by the European organization for research and treatment of cancer-pharmacology and molecular mechanisms group and new drug de. Clin Cancer Res. 2007;13:6410–8. doi:10.1158/1078-0432.CCR-07-0064.

    Article  PubMed  CAS  Google Scholar 

  24. Karlsson MO, Savic RM. Diagnosing model diagnostics. Clin Pharmacol Ther. 2007;82:17–20. doi:10.1038/sj.clpt.6100241.

    Article  PubMed  CAS  Google Scholar 

  25. Karlsson MO, Anehall T, Friberg LE, Henningsson A, Kloft C, Sandström M, et al. Pharmacokinetic/pharmacodynamic modelling in oncological drug development. Basic Clin Pharmacol Toxicol. 2005;96:206–11. doi:10.1111/j.1742-7843.2005.pto960310.x.

    Article  PubMed  CAS  Google Scholar 

  26. Kathman SJ, Williams DH, Hodge JP, Dar M. A Bayesian population PK-PD model of ispinesib-induced myelosuppression. Clin Pharmacol Ther. 2007;81:88–94. doi:10.1038/sj.clpt.6100021.

    Article  PubMed  CAS  Google Scholar 

  27. Kloft C, Wallin J, Henningsson A, Chatelut E, Karlsson MO. Population pharmacokinetic-pharmacodynamic model for neutropenia with patient subgroup identification: comparison across anticancer drugs. Clin Cancer Res. 2006;12:5481–90. doi:10.1158/1078-0432.CCR-06-0815.

    Article  PubMed  CAS  Google Scholar 

  28. Latz JE, Karlsson MO, Rusthoven JJ, Ghosh A, Johnson RD. A semimechanistic-physiologic population pharmacokinetic/pharmacodynamic model for neutropenia following pemetrexed therapy. Cancer Chemother Pharmacol. 2005;57:412–26. doi:10.1007/s00280-005-0077-5.

    Article  PubMed  Google Scholar 

  29. Latz JE, Rusthoven JJ, Karlsson MO, Ghosh A, Johnson RD. Clinical application of a semimechanistic-physiologic population PK/PD model for neutropenia following pemetrexed therapy. Cancer Chemother Pharmacol. 2005;57:427–35. doi:10.1007/s00280-005-0035-2.

    Article  PubMed  Google Scholar 

  30. Leger F, Loos WJ, Bugat R, Mathijssen RH, Goffinet M, Verweij J, et al. Mechanism-based models for topotecan-induced neutropenia. Clin Pharmacol Ther. 2004;76:567–78. doi:10.1016/j.clpt.2004.08.008.

    Article  PubMed  CAS  Google Scholar 

  31. Mandema JW, Verotta D, Sheiner LB. Building population pharmacokinetic-pharmacodynamic models. I. Models for covariate effects. J Pharmacokinet Biopharm. 1992;20:511–28. doi:10.1007/BF01061469.

    Article  PubMed  CAS  Google Scholar 

  32. Minami H, Sasaki Y, Saijo N, Ohtsu T, Fujii H, Igarashi T, et al. Indirect-response model for the time course of leukopenia with anticancer drugs. Clin Pharmacol Ther. 1998;64:511–21. doi:10.1016/S0009-9236(98) 90134-5.

    Article  PubMed  CAS  Google Scholar 

  33. Mukae H, Zamfir D, English D, Hogg JC, van Eeden SF. Polymorphonuclear leukocytes released from the bone marrow by granulocyte colony-stimulating factor: intravascular behavior. Hematol J. 2000;1:159–71. doi:10.1038/sj.thj.6200023.

    Article  PubMed  CAS  Google Scholar 

  34. Muramatsu T, Shinozuka T, Hirasawa T, Tsukada H, Maeda H, Miyamoto T, et al. Treatment strategy for recurrent and refractory epithelial ovarian cancer: efficacy of high-dose chemotherapy with hematopoietic stem cell transplantation. Acta Histochem Cytochem. 2006;39:61–7. doi:10.1267/ahc.05030.

    Article  PubMed  CAS  Google Scholar 

  35. Nitz UA, Mohrmann S, Fischer J, Lindemann W, Berdel WE, Jackisch C, et al. Comparison of rapidly cycled tandem high-dose chemotherapy plus peripheral-blood stem-cell support versus dose-dense conventional chemotherapy for adjuvant treatment of high-risk breast cancer: results of a multicentre phase III trial. Lancet. 2005;366:1935–44. doi:10.1016/S0140-6736(05) 67784-7.

    Article  PubMed  CAS  Google Scholar 

  36. Panetta JC, Schaiquevich P, Santana VM, Stewart CF. Using pharmacokinetic and pharmacodynamic modeling and simulation to evaluate importance of schedule in topotecan therapy for pediatric neuroblastoma. Clin Cancer Res. 2008;14:318–25. doi:10.1158/1078-0432.CCR-07-1243.

    Article  PubMed  CAS  Google Scholar 

  37. Pedrazzoli P, Rosti G, Secondino S, Carminati O, Demirer T. High-dose chemotherapy with autologous hematopoietic stem cell support for solid tumors in adults. Semin Hematol. 2007;44:286–95. doi:10.1053/j.seminhematol.2007.08.009.

    Article  PubMed  Google Scholar 

  38. Peters WP, Ross M, Vredenburgh JJ, Meisenberg B, Marks LB, Winer E, et al. High-dose chemotherapy and autologous bone marrow support as consolidation after standard-dose adjuvant therapy for high-risk primary breast cancer. J Clin Oncol. 1993;11:1132–43.

    PubMed  CAS  Google Scholar 

  39. Peters WP, Rosner GL, Vredenburgh JJ, Shpall EJ, Crump M, Richardson PG, et al. Prospective, randomized comparison of high-dose chemotherapy with stem-cell support versus intermediate-dose chemotherapy after surgery and adjuvant chemotherapy in women with high-risk primary breast cancer: a report of CALGB 9082, SWOG 9114, and NCIC MA-13. J Clin Oncol. 2005;23(10):2191–200. doi:10.1200/JCO.2005.10.202.

    Article  PubMed  CAS  Google Scholar 

  40. Pillai G, Gieschke R, Goggin T, Jacqmin P, Schimmer RC, Steimer JL. A semimechanistic and mechanistic population PK-PD model for biomarker response to ibandronate, a new bisphosphonate for the treatment of osteoporosis. Br J Clin Pharmacol. 2004;58:618–31. doi:10.1111/j.1365-2125.2004.02224.x.

    Article  PubMed  Google Scholar 

  41. Price TH, Chatta GS, Dale DC. Effect of recombinant granulocyte colony-stimulating factor on neutrophil kinetics in normal young and elderly humans. Blood. 1996;88:335–40.

    PubMed  CAS  Google Scholar 

  42. Romberg R, Olofsen E, Sarton E, Teppema L, Dahan A. Pharmacodynamic effect of morphine-6-glucuronide versus morphine on hypoxic and hypercapnic breathing in healthy volunteers. Anesthesiology. 2003;99:788–98. doi:10.1097/00000542-200310000-00008.

    Article  PubMed  CAS  Google Scholar 

  43. Rombout F, Aarons L, Karlsson M, Man A, Mentré F, Nygren P, et al. Modelling and simulation in the development and use of anti-cancer agents: an underused tool? J Pharmacokinet Pharmacodyn. 2004;31:419–40. doi:10.1007/s10928-005-5910-2.

    Article  PubMed  Google Scholar 

  44. Roskos LK, Lum P, Lockbaum P, Schwab G, Yang BB. Pharmacokinetic/pharmacodynamic modeling of pegfilgrastim in healthy subjects. J Clin Pharmacol. 2006;46:747–57. doi:10.1177/0091270006288731.

    Article  PubMed  CAS  Google Scholar 

  45. Sandstrom M, Lindman H, Nygren P, Johansson M, Bergh J, Karlsson MO. Population analysis of the pharmacokinetics and the haematological toxicity of the fluorouracil-epirubicin-cyclophosphamide regimen in breast cancer patients. Cancer Chemother Pharmacol. 2006;58:143–56. doi:10.1007/s00280-005-0140-2.

    Article  PubMed  CAS  Google Scholar 

  46. Sandstrom M, Lindman H, Nygren P, Lidbrink E, Bergh J, Karlsson MO. Model describing the relationship between pharmacokinetics and hematologic toxicity of the epirubicin-docetaxel regimen in breast cancer patients. J Clin Oncol. 2005;23:413–21. doi:10.1200/JCO.2005.09.161.

    Article  PubMed  CAS  Google Scholar 

  47. Schmoor C, Sauerbrei W, Bastert G, Bojar H, Schumacher M, German Breast Cancer Study Group. Long-term prognosis of breast cancer patients with 10 or more positive lymph nodes treated with CMF. Eur J Cancer. 2001;37:1123–31.

    Article  PubMed  CAS  Google Scholar 

  48. Schulman KA, Birch R, Zhen B, Pania N, Weaver CH. Effect of CD34(+) cell dose on resource utilization in patients after high-dose chemotherapy with peripheral-blood stem-cell support. J Clin Oncol. 1999;17:1227–33.

    PubMed  CAS  Google Scholar 

  49. Schwartzberg L, Birch R, Blanco R, Wittlin F, Muscato J, Tauer K, et al. Rapid and sustained hematopoietic reconstitution by peripheral blood stem cell infusion alone following high-dose chemotherapy. Bone Marrow Transplant. 1993;11:369–74.

    PubMed  CAS  Google Scholar 

  50. Sheiner LB, Stanski DR, Vozeh S, Miller RD, Ham J. Simultaneous modeling of pharmacokinetics and pharmacodynamics: application to d-tubocurarine. Clin Pharmacol Ther. 1979;25:358–71.

    PubMed  CAS  Google Scholar 

  51. Shpall EJ, Champlin R, Glaspy JA. Effect of CD34+ peripheral blood progenitor cell dose on hematopoietic recovery. Biol Blood Marrow Transplant. 1998;4:84–92. doi:10.1053/bbmt.1998.v4.pm9763111.

    Article  PubMed  CAS  Google Scholar 

  52. Stadtmauer EA, O’Neill A, Goldstein LJ, Crilley PA, Mangan KF, Ingle JN, et al. Conventional-dose chemotherapy compared with high-dose chemotherapy plus autologous hematopoietic stem-cell transplantation for metastatic breast cancer. Philadelphia Bone Marrow Transplant Group. N Engl J Med. 2000;342:1069–76. doi:10.1056/NEJM200004133421501.

    Article  PubMed  CAS  Google Scholar 

  53. Testart-Paillet D, Girard P, You B, Freyer G, Pobel C, Tranchand B. Contribution of modelling chemotherapy-induced hematological toxicity for clinical practice. Crit Rev Oncol Hematol. 2007;63:1–11. doi:10.1016/j.critrevonc.2007.01.005.

    Article  PubMed  Google Scholar 

  54. To LB, Dyson PG, Branford AL, Russell JA, Haylock DN, Ho JQ, et al. Peripheral blood stem cells collected in very early remission produce rapid and sustained autologous haemopoietic reconstitution in acute non-lymphoblastic leukaemia. Bone Marrow Transplant. 1987;2:103–8.

    PubMed  CAS  Google Scholar 

  55. Troconiz IF, Garrido MJ, Segura C, Cendrós JM, Principe P, Peraire C, et al. Phase I dose-finding study and a pharmacokinetic/pharmacodynamic analysis of the neutropenic response of intravenous diflomotecan in patients with advanced malignant tumours. Cancer Chemother Pharmacol. 2006;57:727–35. doi:10.1007/s00280-005-0112-6.

    Article  PubMed  CAS  Google Scholar 

  56. Ulich TR, del Castillo J, Souza L. Kinetics and mechanisms of recombinant human granulocyte-colony stimulating factor-induced neutrophilia. Am J Pathol. 1988;133:630–8.

    PubMed  CAS  Google Scholar 

  57. Van Kesteren KC, Zandvliet AS, Karlsson MO, Mathôt RA, Punt CJ, Armand JP, et al. Semi-physiological model describing the hematological toxicity of the anti-cancer agent indisulam. Invest New Drugs. 2005;23:225–34. doi:10.1007/s10637-005-6730-3.

    Article  PubMed  CAS  Google Scholar 

  58. Weissbach L, Beyer J. High-dose chemotherapy and hematopoietic stem cell transplantation in patients with germ cell cancer. Urologe A. 2007;46:416–9. doi:10.1007/s00120-007-1318-5.

    Article  PubMed  CAS  Google Scholar 

Download references

ACKNOWLEDGEMENTS

The authors would like to thank the patients, investigators (Dra. Ana Lluch and Dr. Daniel Almenar) and their medical, nursing and laboratory staff who participated in the study. In addition, the authors recognize the valuable comments provided by Dr. N. Victor Jimenez and Dr. Vicente G. Casabó at the beginning of the analysis.

Conflict of Interest

This study was supported by Grant 97/0758 from Fondo de Investigaciones Sanitarias, Ministerio de Sanidad (Spain). The authors disclosure none conflict of interest other than Juan Jose Perez Ruixo is AMGEN employee since May 2007.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Jose Perez-Ruixo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramon-Lopez, A., Nalda-Molina, R., Valenzuela, B. et al. Semi-Mechanistic Model for Neutropenia after High Dose of Chemotherapy in Breast Cancer Patients. Pharm Res 26, 1952–1962 (2009). https://doi.org/10.1007/s11095-009-9910-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-009-9910-6

KEY WORDS

Navigation