Skip to main content

Advertisement

Log in

Characterization of Endogenous G-CSF and the Inverse Correlation to Chemotherapy-Induced Neutropenia in Patients with Breast Cancer Using Population Modeling

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Neutropenia is a severe adverse-event of chemotherapeutics. Neutrophils (ANC) are mainly regulated by granulocyte colony stimulating factor (G-CSF). The aim was to characterize the dynamics between endogenous G-CSF and ANC over time following chemotherapy.

Methods

Endogenous G-CSF and ANC were monitored in forty-nine breast cancer patients treated with sequential adjuvant 5-fluorouracil–epirubicin–cyclophosphamide and docetaxel.

Results

During treatment courses ANC was transiently decreased and was reflected in an endogenous G-CSF increase, which was well described by a semi-mechanistic model including control mechanisms; when G-CSF concentrations increased the proliferation rate increased and the bone maturation time reduced for ANC. Subsequently, ANC in the circulation increased leading to increased elimination of G-CSF. Additionally, a non-specific elimination for G-CSF was quantified. The ANC-dependent elimination contributed to 97% at baseline and 49% at an ANC of 0.1 · 109/L to the total G-CSF elimination.

Conclusion

The integrated G-CSF–myelosuppression model captured the initial rise in endogenous G-CSF following chemotherapy-induced neutropenia and the return to baseline of G-CSF and ANC. The model supported the self-regulatory properties of the system and may be a useful tool for further characterization of the biological system and in optimization of chemotherapy treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig 5

Similar content being viewed by others

Abbreviations

AAG:

Alpha-1 acid glycoprotein

ALB:

Albumin

ALT:

Alanine aminotransferase

ANC:

Absolute neutrophil count

ANC0 :

Baseline neutrophil count

AP:

Alkaline phosphate

AST:

Aspartate aminotransferase

BSA:

Body surface area

BSV:

Between subject variability

CLCR :

Creatinine clearance

CRP:

C-reactive protein

CV%:

Coefficient of variation

DOSEcort :

Amount of cortisol-induced G-CSF release

FEC:

5-flourouracil-epirubicin-cyclophosphamide

FOCE:

First-order conditional estimation method

G-CSF:

Granulocyte colony stimulating factor

GCSF0 :

Baseline G-CSF

IL-6:

Interleukin 6

kANC :

ANC-dependent elimination rate constant

ke :

Non-specific elimination rate constant

MMT:

Mean bone marrow maturation time of neutrophils

MMTFEC :

Mean bone marrow maturation time of neutrophils following FEC treatment

OFV:

Objective function value

PK:

Pharmacokinetics

PKPD:

Pharmacokinetic-pharmacodynamic

rh-GCSF:

Recombinant G-CSF

RSE:

Relative standard error

SLOPE5-FU :

Linear drug effect parameters for 5-FU

SLOPEcyclo :

Linear drug effect parameters for 4-hydroxy cyclophosphamide

SLOPEdoce :

Linear drug effect parameters for docetaxel

SLOPEepi, :

Linear drug effect parameters for epirubicin

t1/2 circ:

Half-life of neutrophils in circulation

t1/2 cort:

Half-life of cortisol-induced G-CSF release

VPC:

Visual predictive check

4-OHCP:

4-hydroxy cyclophosphamide

5-FU:

5-flourouracil

β:

Feedback of G-CSF on transit time

γ:

Feedback of G-CSF on neutrophil proliferation

θMMT-doce :

Change in MMT following docetaxel compared to FEC

References

  1. Crawford J, Dale DC, Kuderer NM, Culakova E, Poniewierski MS, Wolff D, et al. Risk and timing of neutropenic events in adult cancer patients receiving chemotherapy: the results of a prospective nationwide study of oncology practice. J Natl Compr Cancer Netw JNCCN. 2008;6(2):109–18.

    Google Scholar 

  2. Lyman GH, Dale DC, Friedberg J, Crawford J, Fisher RI. Incidence and predictors of low chemotherapy dose-intensity in aggressive non-Hodgkin’s lymphoma: a nationwide study. J Clin Oncol Off J Am Soc Clin Oncol. 2004;22(21):4302–11.

    Article  CAS  Google Scholar 

  3. Colleoni M, Price K, Castiglione-Gertsch M, Goldhirsch A, Coates A, Lindtner J, et al. Dose–response effect of adjuvant cyclophosphamide, methotrexate, 5-fluorouracil (CMF) in node-positive breast cancer. International Breast Cancer Study Group. Eur J Cancer Oxf Engl 1990. 1998 Oct;34(11):1693–700.

  4. Nicola NA. Granulocyte colony-stimulating factor. Immunol Ser. 1990;49:77–109.

    CAS  PubMed  Google Scholar 

  5. Roberts AW. G-CSF: a key regulator of neutrophil production, but that’s not all! Growth Factors Chur Switz. 2005;23(1):33–41.

    Article  CAS  Google Scholar 

  6. Hareng L, Hartung T. Induction and regulation of endogenous granulocyte colony-stimulating factor formation. Biol Chem. 2002;383(10):1501–17.

    Article  CAS  PubMed  Google Scholar 

  7. Reisbach G, Kamp T, Welzl G, Geiz C, Abedinpour F, Lodri A, et al. Regulated plasma levels of colony-stimulating factors, interleukin-6 and interleukin-10 in patients with acute leukaemia and non-hodgkin’s lymphoma undergoing cytoreductive chemotherapy. Br J Haematol. 1996;92(4):907–12.

    Article  CAS  PubMed  Google Scholar 

  8. Kawakami M, Tsutsumi H, Kumakawa T, Abe H, Hirai M, Kurosawa S, et al. Levels of serum granulocyte colony-stimulating factor in patients with infections. Blood. 1990;76(10):1962–4.

    CAS  PubMed  Google Scholar 

  9. Friberg LE, Karlsson MO. Mechanistic models for myelosuppression. Invest New Drugs. 2003;21(2):183–94.

    Article  CAS  PubMed  Google Scholar 

  10. Soto E, Staab A, Doege C, Freiwald M, Munzert G, Trocóniz IF. Comparison of different semi-mechanistic models for chemotherapy-related neutropenia: application to BI 2536 a Plk-1 inhibitor. Cancer Chemother Pharmacol. 2011;68(6):1517–27.

    Article  CAS  PubMed  Google Scholar 

  11. Friberg LE, Henningsson A, Maas H, Nguyen L, Karlsson MO. Model of chemotherapy-induced myelosuppression with parameter consistency across drugs. J Clin Oncol Off J Am Soc Clin Oncol. 2002;20(24):4713–21.

    Article  Google Scholar 

  12. Hayashi N, Kinoshita H, Yukawa E, Higuchi S. Pharmacokinetic and pharmacodynamic analysis of subcutaneous recombinant human granulocyte colony stimulating factor (lenograstim) administration. J Clin Pharmacol. 1999;39(6):583–92.

    Article  CAS  PubMed  Google Scholar 

  13. Krzyzanski W, Ramakrishnan R, Jusko WJ. Basic pharmacodynamic models for agents that alter production of natural cells. J Pharmacokinet Biopharm. 1999;27(5):467–89.

    Article  CAS  PubMed  Google Scholar 

  14. Sugiura M, Yamamoto K, Sawada Y, Iga T. Pharmacokinetic/pharmacodynamic analysis of neutrophil proliferation induced by recombinant granulocyte colony-stimulating factor (rhG-CSF): comparison between intravenous and subcutaneous administration. Biol Pharm Bull. 1997;20(6):684–9.

    Article  CAS  PubMed  Google Scholar 

  15. Wang B, Ludden TM, Cheung EN, Schwab GG, Roskos LK. Population pharmacokinetic-pharmacodynamic modeling of filgrastim (r-metHuG-CSF) in healthy volunteers. J Pharmacokinet Pharmacodyn. 2001;28(4):321–42.

    Article  CAS  PubMed  Google Scholar 

  16. Roskos LK, Lum P, Lockbaum P, Schwab G, Yang B-B. Pharmacokinetic/pharmacodynamic modeling of pegfilgrastim in healthy subjects. J Clin Pharmacol. 2006;46(7):747–57.

    Article  CAS  PubMed  Google Scholar 

  17. Krzyzanski W, Wiczling P, Lowe P, Pigeolet E, Fink M, Berghout A, et al. Population modeling of filgrastim PK-PD in healthy adults following intravenous and subcutaneous administrations. J Clin Pharmacol. 2010;50(9 Suppl):101S–12.

    Article  CAS  PubMed  Google Scholar 

  18. Sugiura M, Ohno Y, Yamada Y, Suzuki H, Iga T. Pharmacokinetic/pharmacodynamic analysis of neutrophil proliferation induced by rhG-CSF in patients receiving antineoplastic drugs. Yakugaku Zasshi. 2004;124(9):599–604.

    Article  CAS  PubMed  Google Scholar 

  19. Pastor ML, Laffont CM, Gladieff L, Schmitt A, Chatelut E, Concordet D. Model-Based Approach to Describe G-CSF Effects in Carboplatin-Treated Cancer Patients. Pharm Res. 2013 Jun 26

  20. Yang B-B, Lum PK, Hayashi MM, Roskos LK. Polyethylene glycol modification of filgrastim results in decreased renal clearance of the protein in rats. J Pharm Sci. 2004;93(5):1367–73.

    Article  CAS  PubMed  Google Scholar 

  21. Roskos LK, Cheung EN, Vincent M, Foote M, Morstyn G. Pharmacology of filgrastim (r-metHuG-CSF). Filgrastim R-MetHuG-CSF Clin Pract N Y NY Marcel Dekker. 1998;41–9.

  22. Cockcroft DW, Gault MH. Prediction of creatinine clearance from serum creatinine. Nephron. 1976;16(1):31–41.

    Article  CAS  PubMed  Google Scholar 

  23. Bruno R, Vivier N, Vergniol JC, De Phillips SL, Montay G, Sheiner LB. A population pharmacokinetic model for docetaxel (Taxotere): model building and validation. J Pharmacokinet Biopharm. 1996;24(2):153–72.

    Article  CAS  PubMed  Google Scholar 

  24. Sandström M, Lindman H, Nygren P, Johansson M, Bergh J, Karlsson MO. Population analysis of the pharmacokinetics and the haematological toxicity of the fluorouracil-epirubicin-cyclophosphamide regimen in breast cancer patients. Cancer Chemother Pharmacol. 2006;58(2):143–56.

    Article  PubMed  Google Scholar 

  25. Urien S, Rezaí K, Lokiec F. Pharmacokinetic modelling of 5-FU production from capecitabine–a population study in 40 adult patients with metastatic cancer. J Pharmacokinet Pharmacodyn. 2005;32(5–6):817–33.

    Article  CAS  PubMed  Google Scholar 

  26. Smith C, Beutler E, Lichtman M, Coller B, Kipps T. Williams hematology. Lichtman M Kipps T Seligsohn U Kaushansky K JT P Eds. 2010;

  27. Hansson EK, Wallin JE, Lindman H, Sandström M, Karlsson MO, Friberg LE. Limited inter-occasion variability in relation to inter-individual variability in chemotherapy-induced myelosuppression. Cancer Chemother Pharmacol. 2010;65(5):839–48.

    Article  PubMed  Google Scholar 

  28. Gisleskog PO, Karlsson MO, Beal SL. Use of prior information to stabilize a population data analysis. J Pharmacokinet Pharmacodyn. 2002;29(5–6):473–505.

    Article  PubMed  Google Scholar 

  29. Quartino AL, Friberg LE, Karlsson MO. A simultaneous analysis of the time-course of leukocytes and neutrophils following docetaxel administration using a semi-mechanistic myelosuppression model. Invest New Drugs. 2012;30(2):833–45.

    Article  CAS  PubMed  Google Scholar 

  30. Ozawa K, Minami H, Sato H. Population pharmacokinetic and pharmacodynamic analysis for time courses of docetaxel-induced neutropenia in Japanese cancer patients. Cancer Sci. 2007;98(12):1985–92.

    Article  CAS  PubMed  Google Scholar 

  31. Soto E, Staab A, Freiwald M, Munzert G, Fritsch H, Döge C, et al. Prediction of neutropenia-related effects of a new combination therapy with the anticancer drugs BI 2536 (a Plk1 Inhibitor) and pemetrexed. Clin Pharmacol Ther. 2010;88(5):660–7.

    Article  CAS  PubMed  Google Scholar 

  32. Czerwinski AW, Czerwinski AB, Whitsett TL, Clark ML. Effects of a single, large, intravenous injection of dexamethasone. Clin Pharmacol Ther. 1972;13(5):638–42.

    CAS  PubMed  Google Scholar 

  33. Mager DE, Lin SX, Blum RA, Lates CD, Jusko WJ. Dose equivalency evaluation of major corticosteroids: pharmacokinetics and cell trafficking and cortisol dynamics. J Clin Pharmacol. 2003;43(11):1216–27.

    Article  CAS  PubMed  Google Scholar 

  34. Friberg LE, Brindley CJ, Karlsson MO, Devlin AJ. Models of schedule dependent haematological toxicity of 2’-deoxy-2’-methylidenecytidine (DMDC). Eur J Clin Pharmacol. 2000;56(8):567–74.

    Article  CAS  PubMed  Google Scholar 

  35. Karlsson MO, Port RE, Ratain MJ, Sheiner LB. A population model for the leukopenic effect of etoposide. Clin Pharmacol Ther. 1995;57(3):325–34.

    Article  PubMed  Google Scholar 

  36. Beal S, Sheiner L, Boeckmann A, Bauer R. NONMEM User’s Guides (1989–2009). 2009. Icon Dev Solut Ellicott City MD.

  37. Saito S, Kawano Y, Watanabe T, Okamoto Y, Abe T, Kurada Y, et al. Serum granulocyte colony-stimulating factor kinetics in children receiving intense chemotherapy with or without stem cell support. J Hematother. 1999;8(3):291–7.

    Article  CAS  PubMed  Google Scholar 

  38. Takatani H, Soda H, Fukuda M, Watanabe M, Kinoshita A, Nakamura T, et al. Levels of recombinant human granulocyte colony-stimulating factor in serum are inversely correlated with circulating neutrophil counts. Antimicrob Agents Chemother. 1996;40(4):988–91.

    CAS  PubMed Central  PubMed  Google Scholar 

  39. Kuwabara T, Kobayashi S, Sugiyama Y. Pharmacokinetics and pharmacodynamics of a recombinant human granulocyte colony-stimulating factor. Drug Metab Rev. 1996;28(4):625–58.

    Article  CAS  PubMed  Google Scholar 

  40. Kuwabara T, Kobayashi S, Sugiyama Y. Kinetic analysis of receptor-mediated endocytosis of G-CSF derivative, nartograstim, in rat bone marrow cells. Am J Physiol. 1996;271(1 Pt 1):E73–84.

    CAS  PubMed  Google Scholar 

  41. Wiczling P, Lowe P, Pigeolet E, Lüdicke F, Balser S, Krzyzanski W. Population pharmacokinetic modelling of filgrastim in healthy adults following intravenous and subcutaneous administrations. Clin Pharmacokinet. 2009;48(12):817–26.

    Article  CAS  PubMed  Google Scholar 

  42. Watari K, Ozawa K, Takahashi S, Tojo A, Tani K, Kamachi S, et al. Pharmacokinetic studies of intravenous glycosylated recombinant human granulocyte colony-stimulating factor in various hematological disorders: inverse correlation between the half-life and bone marrow myeloid cell pool. Int J Hematol. 1997;66(1):57–67.

    Article  CAS  PubMed  Google Scholar 

  43. Fukuda M, Oka M, Ishida Y, Kinoshita H, Terashi K, Fukuda M, et al. Effects of renal function on pharmacokinetics of recombinant human granulocyte colony-stimulating factor in lung cancer patients. Antimicrob Agents Chemother. 2001;45(7):1947–51.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Stute N, Santana VM, Rodman JH, Schell MJ, Ihle JN, Evans WE. Pharmacokinetics of subcutaneous recombinant human granulocyte colony-stimulating factor in children. Blood. 1992;79(11):2849–54.

    CAS  PubMed  Google Scholar 

  45. Extra J-M, Rousseau F, Bruno R, Clavel M, Bail NL, Marty M. Phase I and pharmacokinetic study of taxotere (RP 56976; NSC 628503) given as a short intravenous infusion. Cancer Res. 1993;53(5):1037–42.

    CAS  PubMed  Google Scholar 

  46. Cortes JE, Pazdur R. Docetaxel. J Clin Oncol. 1995;13(10):2643–55.

    CAS  PubMed  Google Scholar 

  47. Burris H, Irvin R, Kuhn J, Kalter S, Smith L, Shaffer D, et al. Phase I clinical trial of taxotere administered as either a 2-hour or 6-hour intravenous infusion. J Clin Oncol. 1993;11(5):950–8.

    CAS  PubMed  Google Scholar 

  48. Tomiak E, Piccart M, Kerger J, Lips S, Awada A, De Valeriola D, et al. Phase I study of docetaxel administered as a 1-hour intravenous infusion on a weekly basis. J Clin Oncol. 1994;12(7):1458–67.

    CAS  PubMed  Google Scholar 

  49. Quartino AL. Pharmacometric models for improved prediction of myelosuppression and treatment response in oncology [internet]. Uppsala: Acta Universitatis Upsaliensis; 2011. Available from: http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-150431.

    Google Scholar 

  50. Wallin JE, Friberg LE, Karlsson MO. Model-based neutrophil-guided dose adaptation in chemotherapy: evaluation of predicted outcome with different types and amounts of information. Basic Clin Pharmacol Toxicol. 2010;106(3):234–42.

    Article  CAS  PubMed  Google Scholar 

  51. Wakayama T, Sohmiya M, Furuya H, Murakami Y, Kato Y. Increased serum human granulocyte colony-stimulating factor (G-CSF) levels following intravenous infusion of high-dose methylprednisolone. Endocr J. 1996;43(1):67–72.

    Article  CAS  PubMed  Google Scholar 

  52. Jilma B, Stohlawetz P, Pernerstorfer T, Eichler HG, Müllner C, Kapiotis S. Glucocorticoids dose-dependently increase plasma levels of granulocyte colony stimulating factor in man. J Clin Endocrinol Metab. 1998;83(3):1037–40.

    Article  CAS  PubMed  Google Scholar 

  53. Dexter TM, Simmons P, Purnell RA, Spooncer E, Schofield R. The regulation of hemopoietic cell development by the stromal cell environment and diffusible regulatory molecules. Prog Clin Biol Res. 1984;148:13–33.

    CAS  PubMed  Google Scholar 

  54. Dexter TM. Regulation of hemopoietic cell growth and development: experimental and clinical studies. Leukemia. 1989;3(7):469–74.

    CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

We are grateful to all the patients who kindly participated in the study. We also like to thank Anders Larsson, Åsa Hedlund and Jessica Barrefjord for technical assistance. Model estimation was in part performed on resources provided by Swedish National Infrastructure for Computing (SNIC) through Uppsala Multidisciplinary Center for Advanced Computational Science (UPPMAX). Martin Agback at UPPMAX is acknowledged for assistance concerning technical aspects in making NONMEM run on the UPPMAX resources. The study was supported by the Swedish Cancer Society.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angelica L. Quartino.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 108 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Quartino, A.L., Karlsson, M.O., Lindman, H. et al. Characterization of Endogenous G-CSF and the Inverse Correlation to Chemotherapy-Induced Neutropenia in Patients with Breast Cancer Using Population Modeling. Pharm Res 31, 3390–3403 (2014). https://doi.org/10.1007/s11095-014-1429-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-014-1429-9

KEY WORDS

Navigation