Skip to main content

Advertisement

Log in

Analysis of Eleutherosides by Tandem Mass Spectrometry: Possibilities of Standardizing a Multi-Phytoadaptogen Formulation for Preventive Oncology

  • MEDICINAL PLANTS
  • Published:
Pharmaceutical Chemistry Journal Aims and scope

The major bioactive constituents in extracts from roots of Eleutherococcus senticosus (Rupr. & Maxim) (Araliaceae) and in a multi-adaptogen herbal formulation (Multiphytoadaptogen) were analyzed using high-performance liquid chromatography (HPLC) in combination with tandem mass spectrometry. Chromatography was performed on an ACQUITY UPLC BEH C18 column in gradient mode. A TSQ Vantage triple quadrupole mass spectrometer with electrospray ionization was used for the analysis. Eleutherosides B (syringin, a phenylpropanoid) and E (syringaresinol diglucoside, a lignan) were identified in both the multi-adaptogen herbal formulation and E. senticosus root extract. The results could be used for standardization and quality testing of herbal formulations including eleutherosides B and E and for justification of the biological action of Multiphytoadaptogen and studies of its new properties considering the identified bioactive constituents. The probable mechanisms of the antitumor and additive/synergistic effects of eleutherosides B and E were established by in silico analysis of their biological activity profiles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

References

  1. O. A. Bocharova, R. V. Karpova, E. V. Bocharov, et al., Ross. Bioterapevticheskii Zh., 19(2), 13 (2020).

    Google Scholar 

  2. O. A. Bocharova, R. V. Karpova, E. V. Bocharov, et al., Ross. Bioterapevticheskii Zh., 19(3), 12 (2020).

    Google Scholar 

  3. O. A. Bocharova, M. I. Davydov, A. Yu. Baryshnikov, et al., Vestn. Ross. Akad. Med. Nauk, No. 8, 21 – 25 (2009).

  4. E. L. Al’perina, E. V. Bocharov, O. A. Bocharova, et al., Current Problems in Neuroimmunopathology [in Russian], Moscow (2012), p. 131.

  5. A. Panossian, G. Wikman, and J. Sarris, Phytomedicine, 17, No. 7, 481 (2010).

    Article  CAS  Google Scholar 

  6. A. N. Shikov, O. N. Pozharitskaya, V. G. Makarov, et al., J. Ethnopharmacol., 154(3), 481 (2014).

    Article  Google Scholar 

  7. O. A. Bocharova, R. V. Karpova, E. V. Bocharov, et al., Ross. Bioterapevticheskii Zh., 19(4), 35 (2020).

    Google Scholar 

  8. O. Bocharova, R. Serebriakova, T. Philippova, et al., Farm. Vestn., 48 (Special Issue), 414 (1997).

    Google Scholar 

  9. O. A. Bocharova, M. M. Pozharitskaya, T. L. Chekalina, et al., Bull. Exp. Biol. Med., 138(6), 578 (2004).

    Article  CAS  Google Scholar 

  10. O. A. Bocharova and M. M. Pozharitskaya, Byull. Eksp. Biol. Med., 138(12), 652 – 657 (2004).

    Google Scholar 

  11. E. V. Bocharov, V. G. Kucheryanu, G. N. Kryzhanovsky, et al., Bull. Exp. Biol. Med., 141(5), 560 (2006).

    Article  CAS  Google Scholar 

  12. O. A. Bocharova, M. I. Davydov, A. A. Klimenkov, et al., Byull. Eksp. Biol. Med, 148(7), 96 (2009).

    Google Scholar 

  13. O. A. Bocharova, M. A. Lyzhenkova, M. V. Mezentseva, et al., Byull. Eksp. Biol. Med., 136(12), 670 (2003).

    Google Scholar 

  14. N. P. Bochkov, O. A. Bocharova, A. A. Aksenov, et al., Med. Genet. (Moscow, Russ. Fed.), 4(1), 15 (2005).

    Google Scholar 

  15. O. A. Bocharova, V. B. Matveev, R. V. Karpova, et al., Bull. Exp. Biol. Med., 141(5), 616, (2006).

    Article  CAS  Google Scholar 

  16. O. N. Kurennaya, R. V Karpova, O. A. Bocharova, et al., Russ. J. Genet., 49(12), 1190 (2013).

    Article  CAS  Google Scholar 

  17. E. V. Bocharov, R. V. Karpova, I. V. Kazeev, et al., Patol. Fiziol. Eksp. Ter., No. 3, 55 (2013).

  18. R. V. Karpova, E. V. Bocharov, I. V. Kazeev, et al., Patol. Fiziol. Eksp. Ter., No. 4, 51 (2013).

  19. V. I. Sheichenko, O. A. Bocharova, O. P. Sheichenko, et al., Zavod. Lab., Diagn. Mater., 72(8), 15 (2006).

    CAS  Google Scholar 

  20. O. P. Sheichenko, O. A. Bocharova, V. I. Sheichenko, et al., Vopr. Biol., Med. Farm. Khim., 5(2), 20 (2007).

    Google Scholar 

  21. O. P. Sheichenko, O. A. Bocharova, B. A. Krapivkin, et al., Vopr. Biol., Med. Farm. Khim., 10, 52 (2012).

    Google Scholar 

  22. I. V. Kazeev, O. A. Bocharova, V. E. Shevchenko, et al., Teor. Osn. Khim. Tekhnol., 55(6), 780 (2021).

    Google Scholar 

  23. I. V. Kazeev, O. A. Bocharova, V. E. Shevchenko, et al., Teor. Osn. Khim. Tekhnol., 54(6), 733 (2020).

    Google Scholar 

  24. O. A. Bocharova, I. V. Kazeev, V. E. Shevchenko, et al., Khim.-farm. Zh., 56(1), 32 – 38 (2022); Pharm. Chem. J., 56(1) 78 – 84 (2022).

  25. S.-P. Liu, R. Wang, Q. Li, et al., Molecules, 17(7), 7903 (2012).

    Article  CAS  Google Scholar 

  26. T. Li, K. Ferns, Z. Q. Yan, et al., Am. J. Chin. Med., 44(8), 1543 (2016).

    Article  CAS  Google Scholar 

  27. A. Jia, Y. Zhang, H. Gao, et al., J. Ethnopharmacol., 268, 113586 (2021).

    Article  CAS  Google Scholar 

  28. V. V. Poroikov, Biochemistry (Moscow), Suppl. Ser.: Biomed. Chem., 14(3), 216 – 227 (2020).

    Google Scholar 

  29. D. A. Filimonov, D. S. Druzhilovskiy, A. A. Lagunin, et al., Biomed. Chem.: Res. Methods, 1(1), e00004-e00004 (2018).

    Google Scholar 

  30. S. Wang, G. Dong, and C. Sheng, Chem. Rev., 119(6), 4180 – 4220 (2019).

    Article  CAS  Google Scholar 

  31. P. V. Pogodin, A. A. Lagunin, A. V. Rudik, et al., Front. Chem., 6, 133 (2018).

    Article  Google Scholar 

  32. A. A. Lagunin, R. K. Goel, D. Y. Gawande, et al., Nat. Prod. Rep., 31(11), 1585 – 1611 (2014).

    Article  CAS  Google Scholar 

  33. D. Y. Gawande, D. S. Druzhilovsky, R. C. Gupta, et al., J. Ethnopharmacol., 202, 97 – 102 (2017).

    Article  Google Scholar 

  34. N. S. Ionov, M. A. Baryshnikova, E. V. Bocharov, et al., Biochemistry (Moscow), Suppl. Ser.: Biomed. Chem., 15(4), 290 – 300 (2021).

    Article  Google Scholar 

  35. R. K. Goel, D. Y. Gawande, A. A. Lagunin, et al., SAR QSAR Environ. Res., 29(1), 69 – 81 (2018).

    Article  CAS  Google Scholar 

  36. J. Tan, J. Luo, C. Meng, et al., Int. Immunopharmacol., 90, 107268 (2021); https://doi.org/10.1016/j.intimp.2020.107268.

    Article  CAS  PubMed  Google Scholar 

  37. D. Che, B. Zhao, Y. Fan, et al., J. Anim. Physiol. Anim. Nutr. (Berlin), 103(4), 1174 (2019); https://doi.org/10.1111/jpn.13087.

    Article  CAS  Google Scholar 

  38. K.-M. Lau, G. G.-L. Yue, Y.-Y. Chan, et al., Chin. Med., 14, 25 (2019); https://doi.org/10.1186/s13020-019-0250-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. A. Panossian, T. Davtyan, N. Gukassyan, et al., Phytomedicine, 9(7), 598 (2002); https://doi.org/10.1078/094471102321616409.

    Article  CAS  PubMed  Google Scholar 

  40. M. Liu, Y. Xiong, S. Shan, et al., Nat. Prod., 83(11), 3315 (2020); https://doi.org/10.1021/acs.jnatprod.0c00650.

    Article  CAS  Google Scholar 

  41. S. Ahmed, D. A. Moni, K. D. Sonawane, et al., Biomol. Struct. Dyn., 39(17), 6553 (2021); https://doi.org/10.1080/07391102.2020.1803135.

    Article  CAS  Google Scholar 

  42. C.-H. Lee, C.-W. Huang, P.-C. Chang, et al., Phytomedicine, 61, 152844 (2019); https://doi.org/10.1016/j.phymed.2019.152844.

    Article  CAS  PubMed  Google Scholar 

  43. S. A. Aventurado, D. B. Billones, R. D. Vasquez, et al., Drug Des., Dev. Ther., 4, 5189 (2020); https://doi.org/10.2147/DDDT.S271952.

    Article  Google Scholar 

  44. G. Costa, A. Maruca, R. Rocca, et al., Antioxidants (Basel), 9(9), 775 (2020); https://doi.org/10.3390/antiox9090775.

    Article  CAS  PubMed Central  Google Scholar 

  45. H. Zhang, H. Gu, Q. Jia, et al., Arch. Biochem. Biophys., 680, 108242 (2020); https://doi.org/10.1016/j.abb.2019.108242.

    Article  CAS  PubMed  Google Scholar 

  46. S. Lee, D. Son, J. Ryu, et al., Arch. Pharm. Res., 27(1), 106 (2004); https://doi.org/10.1007/BF02980055.

    Article  CAS  PubMed  Google Scholar 

  47. D. Huang, Z. Hu, and Z. Yu, Neural. Regen. Res., 8(12), 1103 (2013); https://doi.org/10.3969/j.issn.1673-5374.2013.12.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Y. Kimura and M. Sumiyoshi, J. Ethnopharmacol., 95(2–3), 447 (2004); https://doi.org/10.1016/.jep.2004.08.027.

    Article  PubMed  Google Scholar 

  49. O. A. Bocharova, E. V. Bocharov, R. V. Karpova, et al., Bull. Exp. Biol. Med., 157(2), 258 (2014); https://doi.org/10.1007/s10517-014-2539-4.

    Article  CAS  PubMed  Google Scholar 

  50. O. A. Bocharova, R. V. Karpova, E. V. Bocharov, et al., Bull. Exp. Biol. Med., 159(5), 655 (2015).

    Article  CAS  Google Scholar 

  51. E. V. Bocharov, R. V. Karpova, O. A. Bocharova, et al., Bull. Exp. Biol. Med., 163(6), 789 (2017).

    Article  CAS  Google Scholar 

  52. E. V. Bocharov, O. A. Bocharova, R. V. Karpova, et al., Ross. Bioterapevticheskii Zh., 17(2), 69 – 78 (2018).

    Google Scholar 

  53. E. V. Bocharov, I. F. Ivanova-Smolenskaya, V. V. Poleshchuk, et al., Bull. Exp. Bio. Med., 149(6), 682 (2010).

    Article  CAS  Google Scholar 

  54. O. A. Bocharova, A. V. Revishchin, E. V. Bocharov, et al., Lab. Zhivotn. Nauchn. Issled., No. 2, 47 (2021); https://doi.org/10.29296/2618723X-2021-02-06.

  55. P.-P. Zhang, Z.-F. Guo, P.-H. Zhang, et al., Acta Pharmacol. Sin., 42(2), 209 (2020); https://doi.org/10.1038/s41401-020-0453-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. F. Li, N. Zhang, Q. Wu, et al., Int. J. Mol. Med., 39(1), 199 (2017); https://doi.org/10.3892/ijmm.2016.2824.

    Article  CAS  PubMed  Google Scholar 

  57. S. Wang and X. Yang, Int. Immunopharmacol., 84, 106513 (2020); https://doi.org/10.1016/j.intimp.2020.106513.

    Article  CAS  PubMed  Google Scholar 

  58. B. Zhang, H.-S. Chang, K.-L. Hu, et al., Chin. J. Integr. Med., 27(7), 534 (2021); https://doi.org/10.1007/s11655-019-3051-5.

    Article  CAS  PubMed  Google Scholar 

  59. S. Guo, Y. Liu, Z. Lin, et al., BMC Complement. Altern. Med., 14, 1 (2014); https://doi.org/10.1186/1472-6882-14-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The work was performed with partial support by grants from the Commission on Biomedical Innovations and Technologies, Ministry of Science of the Russian Federation and in the framework of the Basic Research Program in the Russian Federation for the Long Term (2021 – 2030) (No. 122030100170-5).

CONFLICT OF INTEREST

We confirm no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Kazeev.

Additional information

Translated from Khimiko-Farmatsevticheskii Zhurnal, Vol. 56, No. 6, pp. 29 – 37, June, 2022.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bocharova, O.A., Shevchenko, V.E., Kazeev, I.V. et al. Analysis of Eleutherosides by Tandem Mass Spectrometry: Possibilities of Standardizing a Multi-Phytoadaptogen Formulation for Preventive Oncology. Pharm Chem J 56, 806–814 (2022). https://doi.org/10.1007/s11094-022-02712-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11094-022-02712-0

Keywords

Navigation