Skip to main content
Log in

Generation of Multiple Jet Capillaries in Advanced Dielectric Barrier Discharge for Large-Scale Plasma Jets

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

A Correction to this article was published on 30 November 2023

This article has been updated

Abstract

A multiple-capillary Ar plasma jet was successfully generated by an advanced dielectric barrier discharge reactor. The reactor consisted of four quartz capillaries arranged separately and covered by two ring-shaped electrodes, which were isolated by a liquid dielectric. The advantages of the reactor included less Ar consumption (ranging from 1 to 3 L/min to obtain a total cross-sectional area of four individual plasma flow components of 3.14 mm2 at the capillary orifices) and low gas temperatures (not exceeding 40 °C). The obtained temperature is suitable for implementing various biomedical applications such as wound healing, dental treatment, and cancer therapy. Furthermore, the plasma jet spread when it interreacted with dielectric materials or skin, resulting in an enlarged effective plasma treatment area of approximately 8 mm2. Analysis of optical emission spectra of the plasma jet indicated the existence of several reactive species, suggesting that the plasma device holds potential for biomedical applications and material surface treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 8
Fig. 7

Similar content being viewed by others

Data Availability

Not applicable.

Change history

References

  1. Poramapijitwat P, Thana P, Sukum P, Liangdeng Y, Kuensaen C, Boonyawan D (2023) Selective cytotoxicity of lung cancer cells—A549 and H1299—Induced by ringer’s lactate solution activated by a non-thermal air plasma jet device, Nightingale®. Plasma Chem Plasma Process 43:805–830

    Article  CAS  Google Scholar 

  2. Chaturvedi Misra V, Pai BG, Tiwari N, Patro BS, Ghorui S (2023) Excitation frequency effect on breast cancer cell death by atmospheric pressure cold plasma. Plasma Chem Plasma Process 43:467–490

    Article  CAS  Google Scholar 

  3. Vandamme M, Robert E, Pesnel S, Barbosa E, Dozias S, Sobilo J, Lerondel S, Le Pape A, Pouvesle J-M (2010) Antitumor Effect of plasma treatment on U87 glioma xenografts: preliminary results. Plasma Process Polym 7:264–273

    Article  CAS  Google Scholar 

  4. Lu X, Bruggeman PJ, Reuter S, Naidis G, Bogaerts A, Laroussi M, Keidar M, Robert E, Pouvesle J-M, Liu D, Ostrikov K (2022) Grand challenges in low temperature plasmas. Frontiers Phys 10:109

    Article  Google Scholar 

  5. Vijayarangan V, Dozias S, Heusèle C, Jeanneton O, Nizard C, Pichon C, Pouvesle JM, Stancampiano A, Robert E (2023) Boost of cosmetic active ingredient penetration triggered and controlled by the delivery of kHz plasma jet on human skin explants. Front Phys 11:285

    Article  Google Scholar 

  6. Busco G, Robert E, Chettouh-Hammas N, Pouvesle J-M, Grillon C (2020) The emerging potential of cold atmospheric plasma in skin biology. Free Radical Biol Med 161:290–304

    Article  CAS  Google Scholar 

  7. Dubey SK, Parab S, Alexander A, Agrawal M, Achalla VPK, Pal UN, Pandey MM, Kesharwani P (2022) Cold atmospheric plasma therapy in wound healing. Process Biochem 112:112–123

    Article  CAS  Google Scholar 

  8. Lu X, Reuter S, Laroussi M, Liu D (2019) Nonequilibrium Atmospheric pressure plasma jets. CRC Press, Boca Raton

    Book  Google Scholar 

  9. Muto R, Hayashi N (2023) Sterilization characteristics of narrow tubing by nitrogen oxides generated in atmospheric pressure air plasma. Sci Rep 13:6947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Shaw P, Kumar N, Kwak HS, Park JH, Uhm HS, Bogaerts A, Choi EH, Attri P (2018) Bacterial inactivation by plasma treated water enhanced by reactive nitrogen species. Sci Rep 8:11268

    Article  PubMed  PubMed Central  Google Scholar 

  11. Attri P, Han J, Choi S, Choi EH, Bogaerts A, Lee W (2018) CAP modifies the structure of a model protein from thermophilic bacteria: mechanisms of CAP-mediated inactivation. Sci Rep 8:10218

    Article  PubMed  PubMed Central  Google Scholar 

  12. Kelar Tučeková Z, Vacek L, Krumpolec R, Kelar J, Zemánek M, Černák M, Růžička F (2021) Multi-hollow surface dielectric barrier discharge for bacterial biofilm decontamination. Molecules 26:910

    Article  PubMed  PubMed Central  Google Scholar 

  13. Weltmann KD, von Woedtke T (2016) Plasma medicine—current state of research and medical application. Plasma Phys Controlled Fusion 59:014031

    Article  Google Scholar 

  14. Yusupov M, Lackmann J-W, Razzokov J, Kumar S, Stapelmann K, Bogaerts A (2018) Impact of plasma oxidation on structural features of human epidermal growth factor. Plasma Process Polym 15:1800022

    Article  Google Scholar 

  15. Pastorek M, Suchoňová M, Konečná B, Pásztor S, Petrus J, Ivašková N, Celec P, Gardlík R, Machala Z, Tóthová Ľ (2022) The effect of air plasma activated liquid on uropathogenic bacteria. Plasma Chem Plasma Process 42:561–574

    Article  CAS  Google Scholar 

  16. Laroussi M, Bekeschus S, Keidar M, Bogaerts A, Fridman A, Lu X, Kostya, Ostrikov, Hori M, Stapelmann K, Miller V, Reuter S, Laux C, Mesbah A, Walsh J, Jiang C, Thagard S, Tanaka H, Liu D, Yusupov M (2021) Low temperature plasma for Biology. Perspective and Roadmap, Hygiene, and Medicine

    Google Scholar 

  17. von Woedtke T, Laroussi M, Gherardi M (2022) Foundations of plasmas for medical applications. Plasma Sources Sci Technol 31:054002

    Article  Google Scholar 

  18. Li Y, Nie L, Liu D, Kim S, Lu X (2022) Plasma-activated chemical solutions and their bactericidal effects. Plasma Process Polym 19:2100248

    Article  CAS  Google Scholar 

  19. Laroussi M, Lu X (2005) Room-temperature atmospheric pressure plasma plume for biomedical applications. Appl Phys Lett 87:113902

    Article  Google Scholar 

  20. Winter J, Brandenburg R, Weltmann KD (2015) Atmospheric pressure plasma jets: an overview of devices and new directions. Plasma Sources Sci Technol 24:064001

    Article  Google Scholar 

  21. Reuter S, Woedtke TV, Weltmann K-D (2018) The kINPen—a review on physics and chemistry of the atmospheric pressure plasma jet and its applications. J Phys D Appl Phys 51:233001

    Article  Google Scholar 

  22. Kapaldo J, Han X, Ptasinska S (2019) Shielding-gas-controlled atmospheric pressure plasma jets: optical emission, reactive oxygen species, and the effect on cancer cells. Plasma Process Polym 16:1800169

    Article  Google Scholar 

  23. Narimisa M, Onyshchenko Y, Van Rooij O, Morent R, Sobota A, De Geyter N (2022) A poly-diagnostic study of the shield gas-assisted atmospheric pressure plasma jet propagation upon a dielectric surface. Plasma Process Polym 19:2100247

    Article  CAS  Google Scholar 

  24. Adress W, Graham WG (2022) Comparison study of two atmospheric pressure plasma jet configurations for plasma-catalyst development. Plasma Chem Plasma Process 42:1329–1344

    Article  CAS  Google Scholar 

  25. Nguyen DB, Trinh QH, Mok YS, Lee WG (2020) Generation of cold atmospheric plasma jet by a coaxial double dielectric barrier reactor. Plasma Sources Sci Technol 29:035014

    Article  CAS  Google Scholar 

  26. Bekeschus S, Lin A, Fridman A, Wende K, Weltmann K-D, Miller V (2018) A comparison of floating-electrode DBD and kINPen jet: plasma parameters to achieve similar growth reduction in colon cancer cells under standardized conditions. Plasma Chem Plasma Process 38:1–12

    Article  CAS  Google Scholar 

  27. Wang J, Wang T, Wang X, Yang W, Wang Z, Li M, Shi L (2023) Effect of applied voltage on localized deposition of silicon dioxide-like films on stainless steel using atmospheric pressure microplasma jet. Plasma Chem Plasma Process 43:879–899

    Article  CAS  Google Scholar 

  28. Nguyen DB, Mok YS, Lee WG (2019) Enhanced atmospheric pressure plasma jet performance by an alternative dielectric barrier discharge configuration. IEEE Trans Plasma Sci 47:4795–4801

    Article  CAS  Google Scholar 

  29. Lu X, Laroussi M, Puech V (2012) On atmospheric-pressure non-equilibrium plasma jets and plasma bullets. Plasma Sources Sci Technol 21:034005

    Article  Google Scholar 

  30. Kogelschatz U (2003) Dielectric-barrier discharges: their history, discharge physics, and industrial applications. Plasma Chem Plasma Process 23:1–46

    Article  CAS  Google Scholar 

  31. Ren Q, Liu X, Sun H, Huang C, Zhou F, Chen M, Liang C (2020) XJTU: typical arrangements for downstream uniformity assessment in atmospheric-pressure plasma jet arrays. IEEE Access 8:92945–92953

    Article  Google Scholar 

  32. Xia Y, Wang W, Liu D, Peng Y, Song Y, Ji L, Zhao Y, Qi Z, Wang X, Li B (2017) An atmospheric-pressure microplasma array produced by using graphite coating electrodes. Plasma Process Polym 14:1600132

    Article  Google Scholar 

  33. Qian C, Fang Z, Yang J, Kang M (2014) Investigation on atmospheric pressure plasma jet array in ar. IEEE Trans Plasma Sci 42:2438–2439

    Article  Google Scholar 

  34. Robert E, Darny T, Dozias S, Iseni S, Pouvesle JM (2015) New insights on the propagation of pulsed atmospheric plasma streams: from single jet to multi jet arrays. Phys Plasmas 22:12

    Article  Google Scholar 

  35. Maho T, Binois R, Brulé-Morabito F, Demasure M, Douat C, Dozias S, Escot Bocanegra P, Goard I, Hocqueloux L, Le Helloco C, Orel I, Pouvesle J-M, Prazuck T, Stancampiano A, Tocaben C, Robert E (2021) Anti-bacterial action of plasma multi-jets in the context of chronic wound healing. Appl Sci 11:9598

    Article  Google Scholar 

  36. Butterworth T, Allen RWK (2017) Plasma-catalyst interaction studied in a single pellet DBD reactor: dielectric constant effect on plasma dynamics. Plasma Sources Sci Technol 26:065008

    Article  Google Scholar 

  37. Sobota A, Guaitella O, Sretenović GB, Kovačević VV, Slikboer E, Krstić IB, Obradović BM, Kuraica MM (2019) Plasma-surface interaction: dielectric and metallic targets and their influence on the electric field profile in a kHz AC-driven he plasma jet. Plasma Sources Sci Technol 28:045003

    Article  CAS  Google Scholar 

  38. Viegas P, Slikboer E, Bonaventura Z, Guaitella O, Sobota A, Bourdon A (2022) Physics of plasma jets and interaction with surfaces: review on modelling and experiments. Plasma Sou Sci Technol 31:053001

    Article  Google Scholar 

  39. Slikboer E, Guaitella O, Garcia-Caurel E, Sobota A (2022) Towards plasma jet controlled charging of a dielectric target at grounded, biased, and floating potential. Sci Rep 12:1157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Nguyen DB, Trinh QH, Hossain MM, Lee WG, Mok YS (2019) Improvement of electrical measurement of a dielectric barrier discharge plasma jet. IEEE Trans Plasma Sci 47:2004–2010

    Article  CAS  Google Scholar 

  41. Dong L, Ran J, Mao Z (2005) Direct measurement of electron density in microdischarge at atmospheric pressure by stark broadening. Appl Phys Lett 86:16

    Article  Google Scholar 

  42. Hong Y, Niu J, Pan J, Bi Z, Ni W, Liu D, Li J, Wu Y (2016) Electron temperature and density measurement of a dielectric barrier discharge argon plasma generated with tube-to-plate electrodes in water. Vacuum 130:130–136

    Article  CAS  Google Scholar 

  43. Jo A, Joh HM, Chung JW, Chung TH (2020) Cell viability and measurement of reactive species in gas- and liquid-phase exposed by a microwave-excited atmospheric pressure argon plasma jet. Curr Appl Phys 20:562–571

    Article  Google Scholar 

  44. Nguyen DB, Lee WG (2015) Comparison of different applied voltage waveforms on CO2 reforming of CH4 in an atmospheric plasma system. Korean J Chem Eng 32:62–67

    Article  CAS  Google Scholar 

  45. Zhang C, Shao T, Wang R, Zhou Z, Zhou Y, Yan P (2014) A comparison between characteristics of atmospheric-pressure plasma jets sustained by nanosecond- and microsecond-pulse generators in helium. Phys Plasmas 21:10

    Article  Google Scholar 

  46. Prudich ME, Chen H, Gu T, Gupta RB, Johnston KP, Lutz H, Ma G, Su Z (2008) Perry’s chemical engineers’ handbook, section 2 physical and chemical data. McGraw-Hill Publishing

    Google Scholar 

  47. Nozaki T, Miyazaki Y, Unno Y, Okazaki K (2001) Energy distribution and heat transfer mechanisms in atmospheric pressure non-equilibrium plasmas. J Phys D Appl Phys 34:3383–3390

    Article  CAS  Google Scholar 

  48. Villarreal-Medina R, Murphy AB, Méndez PF, Ramírez-Argáez MA (2023) Heat transfer mechanisms in arcs of various gases at atmospheric pressure. Plasma Chem Plasma Process 43:787–803

    Article  CAS  Google Scholar 

  49. Nguyen DB, Trinh QH, Lee WG, Mok YS (2019) Analysis of an ar plasma jet in a dielectric barrier discharge conjugated with a microsecond pulse. Plasma Sci Technol 21:095401

    Article  CAS  Google Scholar 

  50. Haynes WM (ed) (2016) CRC handbook of chemistry and physics, 96th edition (Internet Version 2016). CRC Press/Taylor and Francis, Boca Raton, FL, p 186

  51. Saud S, Nguyen DB, Bhattarai RM, Matyakubov N, Nguyen VT, Ryu S, Jeon H, Kim SB, Mok YS (2022) Plasma-catalytic ethylene removal by a ZSM-5 washcoat honeycomb monolith impregnated with palladium. J Hazard Mater 426:127843

    Article  CAS  PubMed  Google Scholar 

  52. Riès D, Dilecce G, Robert E, Ambrico PF, Dozias S, Pouvesle JM (2014) LIF and fast imaging plasma jet characterization relevant for NTP biomedical applications. J Phys D Appl Phys 47:275401

    Article  Google Scholar 

  53. Darny T, Pouvesle JM, Puech V, Douat C, Dozias S, Robert E (2017) Analysis of conductive target influence in plasma jet experiments through helium metastable and electric field measurements. Plasma Sources Sci Technol 26:045008

    Article  Google Scholar 

Download references

Funding

This work was supported by the Basic Science Research Program through the National Research Foundation funded by the Korean government (MSIT) (2021R1A2C2011441 & 2021R1A4A2000934).

Author information

Authors and Affiliations

Authors

Contributions

DBN: Conceptualization, Methodology, Investigation, Writing - Original Draft, Writing - Review & Editing; SS: Investigation, Writing - Original Draft, Writing - Review & Editing; QTT, HA, N-TN, QHT, HTD, and WGL: Participated in the interpretation of the results, Investigation, Writing - Review & Editing; YSM: Supervision, Writing - Review & Editing, Funding acquisition.

Corresponding authors

Correspondence to Duc Ba Nguyen or Young Sun Mok.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical Approval

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: In the original version of this article, the co-author name “Quang Hung Trinh” was missed inadvertently. However, the co-author name “Quang Hung Trinh” has been included in the author group.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, D.B., Saud, S., Trinh, Q.T. et al. Generation of Multiple Jet Capillaries in Advanced Dielectric Barrier Discharge for Large-Scale Plasma Jets. Plasma Chem Plasma Process 43, 1475–1488 (2023). https://doi.org/10.1007/s11090-023-10404-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-023-10404-0

Keywords

Navigation