Skip to main content
Log in

Comparison Study of Two Atmospheric Pressure Plasma Jet Configurations for Plasma-Catalyst Development

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

In this work, we have studied the influences of electrode geometrical shapes on the optical properties of two non-thermal atmospheric pressure plasma jets, NTAPPjs. A capillary wired-electrode and a traditional ring-electrode NTAPPjs are used in this investigation. Both are driven by a high voltage pulsed power source in the kilovolt range and frequency of several kilohertz. An intensified charged coupled device, ICCD camera on nanosecond timescale is employed to study dynamic behaviour and formation of the plasma discharge. The method provided useful information about the spatial–temporal behaviour of the plasma pulses and the discharge between electrodes. Both plasma discharges are tested to confirm the role of low temperature plasma in the NOx and hydrocarbon oxidation which results from the main combustion of diesel fuel over Ag/Al2O3 catalyst. A plasma-catalyst reactor is designed and checked in environmental applications. A significant enhancement in the activity of the plasma catalyst reactors is observed through the strong conversion of both NOx and hydrocarbon at low activation temperature compared with the conventional thermal activation. The results can give a motivation for the development of plasma-catalyst reactors and the activity of conversions, which is still an urgent requirement in creating a clean environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Cheng C, Liye Z, Zhan R-J (2006) Surface modification of polymer fibre by the new atmospheric pressure cold plasma jet. Surf Coat Technol 200:6659–6665

    Article  CAS  Google Scholar 

  2. Laroussi M (2009) Low temperature plasmas for medicine? IEEE Trans Plasma Sci 37(6):714–725

    Article  CAS  Google Scholar 

  3. Fridman G, Gutsol A, Shekhter A, Vasilets V, Fridman A (2008) Applied plasma medicine. Plasma Processes Polym 5:503

    Article  CAS  Google Scholar 

  4. Laroussi M, Hynes W, Akan T, Lu X, Tendero C (2008) The plasma pencil: a source of hypersonic cold plasma bullets for biomedical applications. IEEE Trans Plasma Sci 36:1298

    Article  Google Scholar 

  5. Zhang X, Huang J, Liu X, Peng L, Guo L, Lv G, Chen W, Feng K, Yang S (2009) Treatment of streptococcus mutans bacteria by a plasma needle. J Appl Phys 105:063302

    Article  Google Scholar 

  6. Yonson S, Coulombe S, Leveille V, Leask RL (2006) Cell treatment and surface functionalization using a miniature atmospheric pressure glow discharge plasma torch. J Phys D: Appl Phys 39(16):3508–3513

    Article  CAS  Google Scholar 

  7. Deng XT, Shi JJ, Kong MG (2007) Protein destruction by a helium atmospheric pressure glow discharge: capability and mechanisms. J Appl Phys 101(7):074701

    Article  Google Scholar 

  8. Fridman G, Peddinghaus M, Balasubramanian M, Ayan H, Fridman A, Gutsol A (2006) Blood coagulation and living tissue sterilization by floating-electrode dielectric barrier discharge in air. Plasma Chem Plasma Process 26:425–442

    Article  CAS  Google Scholar 

  9. Nie Q-Y, Ren C-S, Wang D-Z, Zhang J-L (2008) A simple cold Ar plasma jet generated with a floating electrode at atmospheric pressure. Appl Phys Lett 93:011503

    Article  Google Scholar 

  10. Schulz-Von Der Gathen V, Schaper L, Knake N, Reuter S, Niemi K, Gans T, Winter J (2008) Spatially resolved diagnostics on a microscale atmospheric pressure plasma jet. J Phys D Appl Phys 41(19):194004

    Article  Google Scholar 

  11. Walsh JL, Shi JJ, Kong MG (2006) Contrasting characteristics of pulsed and sinusoidal cold atmospheric plasma jets. Appl Phys Lett 88(17):171501

    Article  Google Scholar 

  12. Le PS, Li G, Wang S, Li HP, Bao CY (2009) Characteristics of kilohertz ignited, radio-frequency atmospheric-pressure dielectric barrier discharges in argon. Appl Phys Lett 95:201501

    Article  Google Scholar 

  13. Walsh JL, Kong MG (2008) Contrasting characteristics of linear-field and cross-field atmospheric plasma jets. Appl Phys Lett 93(11):111501

    Article  Google Scholar 

  14. Stere CE, Adress W, Burch R, Chansai S, Goguet A, Graham WG, De Rosa F, Palma V, Hardacre C (2014) Ambient temperature hydrocarbon selective catalytic reduction of NO x using atmospheric pressure nonthermal plasma activation of a Ag/Al2O3 catalyst. ACS Catal 4(2):666–673

    Article  CAS  Google Scholar 

  15. Stere CE, Adress W, Burch R, Chansai S, Goguet A, Graham WG, Hardacre C (2015) Probing a non-thermal plasma activated heterogeneously catalyzed reaction using in situ DRIFTS-MS. ACS Catal 5(2):956–964

    Article  CAS  Google Scholar 

  16. Adress W (2014) In: Physics and application of an atmospheric pressure plasma jet, PhD Thesis Queen’s University Belfast

  17. Laroussi M (2002) Nonthermal decontamination of biological media by atmospheric-pressure plasmas: review, analysis, and prospects. IEEE Trans Plasma Sci 30(4):1409–1415

    Article  CAS  Google Scholar 

  18. Alkawareek M, Algwari Q, Laverty G, Gorman S, Graham W, O’Connell D, Gilmore B (2012) Eradication of pseudomonas aeruginosa biofilms by atmospheric pressure non-thermal plasma. PLoS ONE 7:e44289

    Article  CAS  Google Scholar 

  19. Hessel V, Anastasopoulou A, Wang Q, Kolb G, Lang J (2013) Energy, catalyst and reactor considerations for (near)-industrial plasma processing and learning for nitrogen-fixation reactions. Catal Today 211:9–28

    Article  CAS  Google Scholar 

  20. Lu X, Jiang Z, Xiong Q, Tang Z, Pan Y (2008) A single electrode room-temperature plasma jet device for biomedical applications. Appl Phys Lett 92(15):151504

    Article  Google Scholar 

  21. Le PS, Li G, Wang S, Li HP, Bao CY (2009) Characteristics of kilohertz-ignited, radio-frequency atmospheric-pressure dielectric barrier discharges in argon. Appl Phys Lett 95(20):201501

    Article  Google Scholar 

  22. Teschke M, Kedzierski J, Finantu E, Korzec D, Engemann J (2005) High speed photographs of a db atmospheric pressure plasma jet. IEEE Trans Plasma Sci 33:310

    Article  Google Scholar 

  23. Adress W, Graham B (2021) Investigation of a non-thermal atmospheric pressure plasma jet in contact with liquids using fast imaging. Plasma Sour Sci Technol 30(9):095015

    Article  CAS  Google Scholar 

  24. Twomey B, Nindrayog A, Niemi K, Graham WG, Dowling DP (2011) Correlation between the electrical and optical properties of an atmospheric pressure plasma during siloxane coating deposition. Plasma Chem Plasma Processing 31(1):139–156

    Article  CAS  Google Scholar 

  25. Itikawa Y (2006) Cross sections for electron collisions with nitrogen molecules. J Phys Chem Ref Data 35(1):31–53

    Article  CAS  Google Scholar 

  26. Bibinov NK, Fateev AA, Wiesemann K (2001) On the influence of metastable reactions on rotational temperatures in dielectric barrier discharges in He-N2 mixtures. J Phys D Appl Phys 34(12):1819–1826

    Article  CAS  Google Scholar 

  27. Fitzsimmons C, Shawcross JT, Whitehead JC (1999) Plasma-assisted synthesis of N2O5 from NO2 in air at atmospheric pressure using a dielectric pellet bed reactor. J Phys D Appl Phys 32:1136–1141

    Article  CAS  Google Scholar 

  28. Matzing H (1991) Chemical-kinetics of flue-gas cleaning by irradiation with electrons. Adv Chem Phys 80:135

    Google Scholar 

  29. Gentile AC, Kushner MJ (1995) Reaction chemistry and optimization of plasma remediation of NxOy from gas streams. J Appl Phys 78(3):2074–2085

    Article  CAS  Google Scholar 

  30. Atkinson R, Baulch DL, Cox RA, Hampson RF, Kerr JA, Rossi MJ, Troe J (1997) Evaluated kinetic, photochemical and heterogeneous data for atmospheric chemistry. J Phys Chem 26:521

    CAS  Google Scholar 

  31. Breen JP, Burch R, Hardacre C, Hill CJ, Rioche C (2007) A fast transient kinetic study of the effect of H2 on the selective catalytic reduction of NOx with octane using isotopically labelled 15NO. J Catal 246(1):1–9

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank C. E. Stere and C. Hardacre, from the centre for the theory and application of catalysis, Queen's University Belfast, Northern Ireland, UK, for their technical assistance and support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wameedh Adress.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adress, W., Graham, W.G. Comparison Study of Two Atmospheric Pressure Plasma Jet Configurations for Plasma-Catalyst Development. Plasma Chem Plasma Process 42, 1329–1344 (2022). https://doi.org/10.1007/s11090-022-10278-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-022-10278-8

Keywords

Navigation