Skip to main content
Log in

Low-current discharge plasma jets in a gas flow. Application of plasma jets

  • Supplement: Rossiiskii Khimicheskii Zhurnal-Zhurnal Rossiiskogo Khimicheskogo Obshchestva im. D.I. Mendeleeva (Russian Chemistry Journal)
  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

The paper describes the results of investigations of low-current discharges in a gas flow at atmospheric pressure. The primary focus is on glow discharges in coaxial plasmatrons and the so-called gliding arc. Such discharges are typically used for obtaining a plasma jet at the exit of the electrode system. The jet contains active chemical species playing an important role in various applications of the discharge. Plasma-assisted combustion and oxidation of hydrocarbon fuels is also considered. Besides, the applications of plasma jet for modification of surfaces and for use in biology and medicine are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schutze, A., Leong, J.Y., Babayan, S.E., Park, J., Selwyn, G.S., and Hick, R.F., IEEE Trans. Plasma Sci., 1998, vol. 26, no. 6, pp. 1685–1694.

    Article  CAS  Google Scholar 

  2. Starikovskaia, S.M., J. Phys. D: Appl. Phys., 2006, vol. 39, no. 16, pp. R265–R299.

    Article  CAS  Google Scholar 

  3. Matveev, I.B. and Rosocha, L.A., IEEE Trans. Plasma Sci., 2010, vol. 38, no. 12, pp. 3257–3264.

    Article  Google Scholar 

  4. Cormier, J.-M. and Rusu, I., J. Phys. D: Appl. Phys., 2001, vol. 33, pp. 2798–2803.

    Article  Google Scholar 

  5. Petitpas, G., Rollier, J.D., Darmon, A., Gonzalez-Aguilar, J., Metkemeijer, R., and Fulcheri, L., Int. J. Hydrogen Energ., 2007, vol. 32, no. 14, pp. 2848–2867.

    Article  CAS  Google Scholar 

  6. Gutsol, A., Rabinovich, A., and Fridman, A., J. Phys. D: Appl. Phys., 2011, vol. 44, no. 27, article no. 274001.

    Google Scholar 

  7. Babariotskii, A.I., Deminskii, M.A., Demkin, A.I., Zhivotov, V.K., Potapkin, B.V., Poteknin, S.V., Rusanov, V.D., Ryzantsev, E.I., and Etievan, C., High Energ. Chem., 1999, vol. 33, no. 1, pp. 45–51.

    CAS  Google Scholar 

  8. Tao, X.M., Bai, M.G., Li, X., Long, H., Shang, S., Yin, Y.X., and Dai, X.Y., Prog. Energ. Combust. Sci., 2011, vol. 37, pp. 113–124.

    Article  CAS  Google Scholar 

  9. Korolev, Y.D., Frants, O.B., Landl, N.V., Geyman, V.G., Shemyakin, I.A., Enenko, A.A., and Matveev, I.B., IEEE Trans. Plasma Sci., 2009, vol. 37, no. 12, pp. 2314–2320.

    Article  CAS  Google Scholar 

  10. Noeske, M., Degenhardt, J., Strudthoff, S., and Lommatzsch, U., Int. J. Adhes. Adhes., 2004, vol. 24, no. 2, pp. 171–177.

    Article  CAS  Google Scholar 

  11. Romero-Sanchez, M.D. and Martin-Martinez, J.M., Int. J. Adhes. Adhes., 2006, vol. 26, no. 5, pp. 345–354.

    Article  CAS  Google Scholar 

  12. Takemura, Y., Yamaguchi, N., and Hara, T., Jpn. J. Appl. Phys., 2008, vol. 47, no. 7, pp. 5644–5647.

    Article  CAS  Google Scholar 

  13. Kropke, S., Akishev, Y.S., and Hollander, A., Surf. Coat. Technol., 2001, vol. 142, pp. 512–516.

    Article  Google Scholar 

  14. Leduc, V, Coulombe, S., and Leask, R.L., IEEE Trans. Plasma Sci., 2009, vol. 37, no. 6, pp. 927–933.

    Article  CAS  Google Scholar 

  15. Yuji, T., Urayama, T., Fujii, S., Mungkung, N., and Akatsuka, H., Surf. Coat. Technol., 2008, vol. 202, nos. 22–23, pp. 5289–5292.

    Article  CAS  Google Scholar 

  16. Montie, T.C., Kelly-Wintenberg, K., and Roth, J.R., IEEE Trans. Plasma Sci., 2000, vol. 28, no. 1, pp. 41–50.

    Article  Google Scholar 

  17. Cooper, M., Fridman, G., Staack, D., Gutsol, A.F., Vasilets, V.N., Anandan, S., Cho, Y.I., Fridman, A., and Tsapin, A., I IEEE Trans. Plasma Sci., 2009, vol. 37, no. 6, pp. 866–871.

    Article  CAS  Google Scholar 

  18. Laroussi, M., IEEE Trans. Plasma Sci., 2009, vol. 37, no. 6, pp. 714–725.

    Article  CAS  Google Scholar 

  19. Kolb, J.F., Mohamed, A.-A.H., Price, R.O., Swanson, R.J., Bowman, A., Chiavarini, R.L., Stacey, M., and Schoenbach, K.H., Appl. Phys. Lett., 2008, vol. 92, no. 24, article no. 241501.

    Google Scholar 

  20. Kuhn, S., Bibinov, N., Gesche R., and Awakowicz, P., Plasma Sources Sci. Technol., 2010, vol. 19, no. 1, article no. 015013.

    Google Scholar 

  21. Kuo, S.P., Chen, C.Y., Lin, C.S., and Chiang, S.H., IEEE Trans. Plasma Sci., 2010, vol. 38, no. 8, pp. 1908–1914.

    Article  Google Scholar 

  22. Duarte, S., Kuo, S.P., Murata, R.M., Chen, C.Y., Saxena, D., Huang, K.J., and Popovic, S., Phys. Plasmas, 2011, vol. 18, article no. 073503.

  23. Yan, X., Zou, F., Zhao, S., Lu, X.P., He, G., Xiong, Z., Xiong, Q., Zhao, Q., Deng, P., Huang, J., and Yang, G., IEEE Trans. Plasma Sci., 2010, vol. 38, no. 9, pp. 2451–2457.

    Article  CAS  Google Scholar 

  24. Wende, K., Landsberg, K., Lindequist, U., Weltmann, K.D., and Woedtke, T., IEEE Trans. Plasma Sci., 2010, vol. 38, no. 9, pp. 2479–2485.

    Article  CAS  Google Scholar 

  25. Akishev, Y.S., Grushin, M.E., Kochetov, I.V., Napartovich, A.P., Pan’kin, M.V., and Trushkin, N.I., Plasma Phys. Rep., 2000, vol. 26, no. 2, pp. 157–163.

    Article  Google Scholar 

  26. Janda, M., Martisovits, V., and Machala, Z., Plasma Sources Sci. Technol., 2011, vol. 20, no. 3, article no. 035015.

    Google Scholar 

  27. Mesyats, G.A. and Korolev, Y.D., Usp. Fiz. Nauk, 1986, vol. 148, no. 1, pp. 101–122.

    Article  CAS  Google Scholar 

  28. Kozyrev, A.V., Korolev, Y.D., and Mesyats, G.A., Zh. Tekh. Fiz., 1987, vol. 57, no. 1, pp. 58–64.

    Google Scholar 

  29. Kozyrev, A.V., Korolev, Y.D., Mesyats, G.A., Novoselov, Y.N., and Shemyakin, I.A., Zh. Tekh. Fiz., 1981, vol. 51, no. 9, pp. 1817–1822.

    CAS  Google Scholar 

  30. Korolev, Y.D., Mesyats, G.A., and Khuzeev, A.P., Dokl. Akad. Nauk SSSR, 1980, vol. 253, no. 3, pp. 606–609.

    Google Scholar 

  31. Korolev, Y.D., Kuzmin, V.A., and Mesyats, G.A., Zh. Tekh. Fiz., 1980, vol. 50, no. 4, pp. 699–704.

    Google Scholar 

  32. Genkin, S.A., Korolev, Y.D., and Khuzeev, A.P., Zh. Tekh. Fiz., 1982, vol. 52, no. 5, pp. 875–879.

    CAS  Google Scholar 

  33. Meek, J.M. and Craggs, J.D., Electrical Breakdown of Gases, Oxford: Clarendon, 1953.

    Google Scholar 

  34. Korolev, Y.D. and Mesyats, G.A., Physics of Pulsed Breakdown in Gases, Yekaterinburg: Ural Branch, Russian Academy of Sciences, 1998.

    Google Scholar 

  35. Kozhevnikov, V.Y., Kozyrev, A.V., and Korolev, Y.D., Plasma Phys. Rep., 2006, vol. 32, no. 11, pp. 949–959.

    Article  CAS  Google Scholar 

  36. Genkin, S.A., Karlov, N.V., Klimenko, K.A., Korolev, Y.D., Kuzmin, V.A., Mesyats, G.A., Novoselov, Y.N., and Prokhorov, A.M., Pis’ma Zh. Tekh. Fiz., 1984, vol. 10, no. 11, pp. 641–645.

    CAS  Google Scholar 

  37. Kozyrev, A.V. and Korolev, Y.D., Zh. Tekh. Fiz., 1981, vol. 51, no. 10, pp. 2210–2213.

    Google Scholar 

  38. Becker, K., Schoenbach, K., and Eden, J., J. Phys. D: Appl. Phys., 2006, vol. 39, no. 3, pp. R55–R70.

    Article  CAS  Google Scholar 

  39. Korolev, Y.D., Frants, O.B., Geyman, V.G., Kasyanov, V.S., and Landl, N.V., IEEE Trans. Plasma Sci., 2012, vol. 40, no. 11, pp. 2951–2960.

    Article  Google Scholar 

  40. Korolev, Y.D., Frants, O.B., Landl, N.V., Geyman, V.G., and Matveev, I.B., IEEE Trans. Plasma Sci., 2007, vol. 35, no. 6, pp. 1651–1657.

    Article  Google Scholar 

  41. Korolev, Y.D., Frants, O.B., Landl, N.V., Geyman, V.G., and Matveev, I.B., IEEE Trans. Plasma Sci., 2009, vol. 37, no. 4, pp. 586–592.

    Article  CAS  Google Scholar 

  42. Korolev, Y.D., Frants, O.B., Landl, N.V., Kasyanov, V.S., Galanov, S.I., Sidorova, O.I., Kim, Y., Rosocha, L.A., and Matveev, I.B., IEEE Trans. Plasma Sci., 2012, vol. 40, no. 2, pp. 535–542.

    Article  CAS  Google Scholar 

  43. Korolev, Y.D., Frants, O.B., Landl, N.V., and Suslov, A.I., IEEE Trans. Plasma Sci., 2012, vol. 40, no. 11, pp. 2837–2842.

    Article  CAS  Google Scholar 

  44. Rao, X., Hammack, S., Carter, C., Matveev, I.B., and Lee, T., IEEE Trans. Plasma Sci., 2010, vol. 38, no. 12, pp. 3265–3271.

    Article  CAS  Google Scholar 

  45. Askarova, A.S., Karpenko, E.I., Lavrishcheva, Y.I., Messerle, V.E., and Ustimenko, A.B., IEEE Trans. Plasma Sci., 2007, vol. 35, no. 6, pp. 1607–1616.

    Article  CAS  Google Scholar 

  46. Pellerin, S., Richard, F., Chapelle, J., Cormier, J.-M., and Musiol, K., J. Phys. D: Appl. Phys., 2000, vol. 33, pp. 2407–2419.

    Article  CAS  Google Scholar 

  47. Kuznetsova, I.V., Kalashnikov, N.Y., Gutsol, A.F., Fridman, A.F., and Kennedy, L.A., J. Appl. Phys., 2002, vol. 92, no. 8, pp. 4231–4237.

    Article  CAS  Google Scholar 

  48. Korolev, Y.D., Frants, O.B., Geyman, V.G., Landl, N.V., and Kasyanov, V.S., IEEE Trans. Plasma Sci., 2011, vol. 39, no. 12, pp. 3319–3325.

    Article  CAS  Google Scholar 

  49. Zhang, C., Shao, T., Xu, J., Ma, H., Duan, L., Ren, C., and Yan, P., IEEE Trans. Plasma Sci., 2012, vol. 40, no. 11, pp. 2843–2849.

    Article  Google Scholar 

  50. Xu, G.F. and Ding, X.W., IEEE Trans. Plasma Sci., 2012, vol. 40, no. 12, pp. 3458–3464.

    Article  Google Scholar 

  51. Sagas, J.S., Neto, A.H., Pereira, A.C., Maciel, H.C., and Lacava, P.T., IEEE Trans. Plasma Sci., 2011, vol. 39, no. 2, pp. 775–780.

    Article  CAS  Google Scholar 

  52. Sun, Z.W., Zhu, J.J., Li, Z.S., Adlen, M., Leipold, E., Salewski, M., and Kusano, Y., Optic Express, 2013, vol. 21, no. 5, pp. 6028–6044.

    Article  CAS  Google Scholar 

  53. Garduno, M., Pacheco, M., Pacheco, J., Valdivia, R., Santana, A., Lefort, B., Estrada, N., and Rivera-Rodrıguez, C., J. Renew. Sustain. Energ., 2012, vol. 4, article no. 021202.

  54. Kosarev, I.N., Aleksandrov, N.L., Kindysheva, S.V., Starikovskaia, S.M., and Starikovskii, A.Y., J. Phys. D: Appl. Phys., 2008, vol. 41, no. 3, article no. 032002.

    Google Scholar 

  55. Korolev, Y.D., Frants, O.B., Landl, N.V., Geyman, V.G., Zerlitsyn, A.G., Shiyan, V.P., and Medvedev, Y.V., IEEE Trans. Plasma Sci., 2009, vol. 37, no. 12, pp. 2298–2302.

    Article  CAS  Google Scholar 

  56. Bromberg, L., Cohn, D.R., Rabinovich, A., O’Brien, C., and Hochgreb, S., Energ. Fuels, 1998, vol. 12, no. 1, pp. 11–18.

    Article  CAS  Google Scholar 

  57. Artemov, A.V., Bul’ba, V.A. Voshchinin, S.A., Krutyakov, Y.A., Kudrinskii, A.A., Ostryi, I.I., and Pereslavtsev, A.V., Russ. J. Gen. Chem., 2012, vol. 82, no. 4, pp. 791–800.

    Article  CAS  Google Scholar 

  58. Artemov, A.V., Bul’ba, V.A. Voshchinin, S.A., Krutyakov, Y.A., Kudrinskii, A.A., Ostryi, I.I., and Pereslavtsev, A.V., Russ. J. Gen. Chem., 2012, vol. 82, no. 4, pp. 801–807.

    Article  CAS  Google Scholar 

  59. Rafiq, M.H. and Hustad, J.E., Renew. Energ., 2011, vol. 36, no. 11, pp. 2878–2887.

    Article  CAS  Google Scholar 

  60. Lee, H. and Sekiguchi, H., J. Phys. D: Appl. Phys., 2011, vol. 44, no. 27, article no. 274008.

    Google Scholar 

  61. Pornmai, K., Jindanin, A., Sekiguchi, H., and Chavadej, S., Plasma Chem. Plasma Process, 2012, vol. 32, no. 4, pp. 723–742.

    Article  CAS  Google Scholar 

  62. Karla, C.S., Gutsol, A.F., and Fridman, A.F., IEEE Trans. Plasma Sci., 2005, vol. 33, no. 1, pp. 32–41.

    Article  Google Scholar 

  63. Levko, D.S., Tsymbalyuk, A.N., and Shchedrin, A.I., Plasma Phys. Rep., 2012, vol. 38, no. 11, pp. 913–923.

    Article  CAS  Google Scholar 

  64. Babaritskii, A.I., Baranov, I.E., Bibikov, M.B., Demkin, S.A., Zhivotov, V.K., Konovalov, G.M., Lysov, G.V., Moskovskii, A.S., Rusanov, V.D., Smirnov, R.V., and Cheban’kov, F.N., High Energ. Chem., 2004, vol. 38, no. 6, pp. 407–410.

    Article  CAS  Google Scholar 

  65. Rusanov, V.D., Babaritskii, A.I., Baranov, I.E., Bibikov, M.B., Deminskii, M.A., Demkin, S.A., Zhivotov, V.K., Konovalov, G.M., Lysov, G.V., Moskovskii, A.S., Potapkin, B.V., Smirnov, R.V., and Cheban’kov, F.N., Dokl. Chem., 2004, vol. 395, pp. 82–85.

    Article  CAS  Google Scholar 

  66. Hwang, N., Lee, J., Lee, D.H., and Song, Y.H., Plasma Chem. Plasma Process., 2012, vol. 32, no. 2, pp. 187–200.

    Article  CAS  Google Scholar 

  67. Du, C.M., Yan, J.H., and Cheron, B., Plasma Sources Sci. Technol., 2007, vol. 16, pp. 791–797.

    Article  CAS  Google Scholar 

  68. Trushkin, A.N., Grushin, M.E., Kochetov, I.V., Trushkin, N.I, and Akishev, Y.S., Plasma Phys. Rep., 2013, vol. 39, no. 2, pp. 167–182.

    Article  CAS  Google Scholar 

  69. Burlica, R. and Locke, B.R., IEEE Trans. Ind. Appl., 2008, vol. 44, no. 2, pp. 482–489.

    Article  CAS  Google Scholar 

  70. Tu, X., Yu, L., Yan, J.H., Cen, K.F., and Cheron, B.G., Phys. Plasmas, 2009, vol. 16, article no. 113506.

  71. Korolev, Y.D., Mesyats, G.A., and Yarosh, A.M., High Energ. Chem., 1987, vol. 21, no. 5, pp. 389–392.

    Google Scholar 

  72. Dudek, D, Bibinov, N., Engemann, J., and Awakowicz, P., J. Phys. D: Appl. Phys., 2007, vol. 40, no. 23, pp. 7367–7371.

    Article  CAS  Google Scholar 

  73. Hsu, C.C. and Yang, J.J., IEEE Trans. Plasma Sci., 2009, vol. 38, no. 3, pp. 496–499.

    Google Scholar 

  74. Lommatzsch, U., Pasedag, D., Baalmann, A., Ellinghorst, G., and Wagner, H.E., Plasma Process. Polym., 2007, vol. 4, no. 1, pp. S1041–S1045.

    Article  Google Scholar 

  75. Martin-Martinez, J.M. and Romero-Sanchez, M.D., Eur. Phys. J. Appl. Phys., 2006, vol. 34, pp. 125–138.

    Article  CAS  Google Scholar 

  76. Namihira, T., Tsukamoto, S., Wang, D.Y., Katsuki, S., Hackam, R., Okamoto, K., and Akiyama, H., IEEE Trans. Plasma Sci., 2000, vol. 28, no. 1, pp. 109–114.

    Article  CAS  Google Scholar 

  77. Sakai, S., Matsuda, M., Wang, D., Namihira, T., Akiyama, H., Okamoto, K., and Toda, K., Acta Phys. Pol. A, 2009, vol. 115, no. 6, pp. 1104–1106.

    CAS  Google Scholar 

  78. Sousa, J.S., Niemi, K., Cox, L.J., Algwari, Q. T., Gans, T., and O’Connell, D., J. Appl. Phys., 2011, vol. 109, no. 12, article no. 123302.

    Google Scholar 

  79. Ionin, A.A., Kochetov, I.V., Napartovich, A.P., and Yuryshev, N.N., J. Appl. Phys., 2007, vol. 40, no. 2, pp. R25–R61.

    CAS  Google Scholar 

  80. Vlasov, V.A., Tikhomirov, I.A., and Lutsenko, Y.Y., Physics and Electro-Physics of High-Frequency Torch Discharge and Plasmatrons on Its Base, Tomsk-Northampton: STT, 2007.

    Google Scholar 

  81. Leveille, V. and Coulombe, S., Plasma Sources Sci. Technol., 2005, vol. 14, pp. 467–476.

    Article  CAS  Google Scholar 

  82. Li, S.Z., Huang, W.T., and Wang, D., Phys. Plasmas, 2009, vol. 16, article no. 093501.

  83. Bornholdt, S., Wolter, M., and Kersten, H., Eur. Phys. J. D, 2010, vol. 60, no. 3, pp. 653–660.

    Article  CAS  Google Scholar 

  84. Laroussi, M. and Lu, X., Appl. Phys. Lett., 2005, vol. 87, article no. 113902.

  85. Karakas, E., Koklu, M., and Laroussi, M., J. Phys. D: Appl. Phys., 2010, vol. 43, article no. 155202.

  86. Karakas, E. and Laroussi, M., J. Appl. Phys., 2010, vol. 108, article no. 063305.

  87. Jarrige, J., Laroussi, M., and Karakas, E., Plasma Sources Sci. Technol., 2010, vol. 19, no. 6, article no. 065005.

    Google Scholar 

  88. Jiang, C., Chen, M.T., and Gundersen, M.A., J. Phys. D: Appl. Phys., 2009, vol. 42, article no. 232002.

  89. Xiong, Q., Lu, X., Ostrikov, K., Xiong, Z., Xian, Y., Zhou, F., Zou, C., Hu, J., Gong, W., and Jiang, Z., Phys. Plasmas, 2009, vol. 16, no. 4, article no. 043505.

    Google Scholar 

  90. Lu, X., Xiong, Q., Xiong, Z., Hu, J., Zhou, F., Gong, W., Xian, Y., Zou, C., Tang, Z., Jiang, Z., and Pan, Y., J. Appl. Phys., 2009, vol. 105, article no. 043304.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. D. Korolev.

Additional information

Original Russian Text © Yu.D. Korolev, 2013, published in Rossiiskii Khimicheskii Zhurnal, 2013, Vol. 57, Nos. 3–4, pp. 108–120.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Korolev, Y.D. Low-current discharge plasma jets in a gas flow. Application of plasma jets. Russ J Gen Chem 85, 1311–1325 (2015). https://doi.org/10.1134/S1070363215050473

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363215050473

Keywords

Navigation