Skip to main content

Advertisement

Log in

Mn-Based Catalysts for Post Non-Thermal Plasma Catalytic Abatement of VOCs: A Review on Experiments, Simulations and Modeling

  • Review Article
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

The combination of non-thermal plasma (NTP) and catalyst characterized by high energy efficiency, enhanced volatile organic compounds (VOCs) removal efficiency, high product selectivity, and low production of unwanted and/or toxic by-products possesses a great promise for the abatement of VOCs. This work reviews the state of knowledge regarding Mn-based catalysts for VOCs abatement in the post-plasma-catalytic (PPC) system. First, the development and the performance of different Mn-based catalysts such as pure manganese oxide, mixed manganese oxide-based catalysts, and supported Mn-based catalysts in terms of VOCs abatement and O3 decomposition are summarized. Then, the mechanism of the VOCs decomposition in the NTP and PPC system is discussed. Finally, the modeling and simulation of VOCs abatement in the NTP and PPC system are overviewed. This review aims at providing a reference guide for the development and optimization of VOCs abatement in the PPC system using Mn-based catalysts.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Copyright 2020. Reprinted with permission from Elsevier

Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Xiao G, Xu W, Wu R et al (2014) Non-thermal plasmas for VOCs abatement. Plasma Chem Plasma Process 34:1033–1065. https://doi.org/10.1007/s11090-014-9562-0

    Article  CAS  Google Scholar 

  2. Li TY, Chiang SJ, Liaw BJ, Chen YZ (2011) Catalytic oxidation of benzene over CuO/Ce1-xMnxO2 catalysts. Appl Catal B Environ 103:143–148. https://doi.org/10.1016/j.apcatb.2011.01.020

    Article  CAS  Google Scholar 

  3. Zou W, Gao B, Ok YS, Dong L (2019) Integrated adsorption and photocatalytic degradation of volatile organic compounds (VOCs) using carbon-based nanocomposites: a critical review. Chemosphere 218:845–859. https://doi.org/10.1016/j.chemosphere.2018.11.175

    Article  CAS  PubMed  Google Scholar 

  4. Yang C, Miao G, Pi Y et al (2019) Abatement of various types of VOCs by adsorption/catalytic oxidation: a review. Chem Eng J 370:1128–1153. https://doi.org/10.1016/j.cej.2019.03.232

    Article  CAS  Google Scholar 

  5. Parmar GR, Rao NN (2009) Emerging control technologies for volatile organic compounds. Crit Rev Environ Sci Technol 39:41–78. https://doi.org/10.1080/10643380701413658

    Article  CAS  Google Scholar 

  6. Kim HH, Teramoto Y, Negishi N, Ogata A (2015) A multidisciplinary approach to understand the interactions of nonthermal plasma and catalyst: a review. Catal Today 256:13–22. https://doi.org/10.1016/j.cattod.2015.04.009

    Article  CAS  Google Scholar 

  7. Gibbon P (2020) Introduction to plasma physics. CRC Press

    Google Scholar 

  8. Tendero C, Tixier C, Tristant P et al (2006) Atmospheric pressure plasmas: a review. Spectrochim Acta B At Spectrosc 61:2–30. https://doi.org/10.1016/j.sab.2005.10.003

    Article  CAS  Google Scholar 

  9. Dębek R, Azzolina-Jury F, Travert A, Maugé F (2019) A review on plasma-catalytic methanation of carbon dioxide—looking for an efficient catalyst. Renew Sustain Energy Rev 116:109427. https://doi.org/10.1016/j.rser.2019.109427

    Article  CAS  Google Scholar 

  10. Kim HH (2004) Nonthermal plasma processing for air-pollution control: a historical review, current issues, and future prospects. Plasma Process Polym 1:91–110. https://doi.org/10.1002/ppap.200400028

    Article  CAS  Google Scholar 

  11. Pfender E (1999) Thermal plasma technology: Where do we stand and where are we going? Plasma Chem Plasma Process 19:1–31. https://doi.org/10.1023/A:1021899731587

    Article  CAS  Google Scholar 

  12. Heberlein J, Murphy AB (2008) Thermal plasma waste treatment. J Phys D Appl Phys 41:053001. https://doi.org/10.1088/0022-3727/41/5/053001

    Article  CAS  Google Scholar 

  13. Chavadej S, Kiatubolpaiboon W, Rangsunvigit P, Sreethawong T (2007) A combined multistage corona discharge and catalytic system for gaseous benzene removal. J Mol Catal A Chem 263:128–136. https://doi.org/10.1016/j.molcata.2006.08.061

    Article  CAS  Google Scholar 

  14. Yawootti A, Intra P, Tippayawong N, Rattanadecho P (2015) An experimental study of relative humidity and air flow effects on positive and negative corona discharges in a corona-needle charger. J Electrostat 77:116–122. https://doi.org/10.1016/j.elstat.2015.07.011

    Article  Google Scholar 

  15. Blin-Simiand N, Pasquiers S, Jorand F et al (2009) Removal of formaldehyde in nitrogen and in dry air by a DBD: Importance of temperature and role of nitrogen metastable states. J Phys D Appl Phys 42:122003. https://doi.org/10.1088/0022-3727/42/12/122003

    Article  CAS  Google Scholar 

  16. Ding HX, Zhu AM, Yang XF et al (2005) Removal of formaldehyde from gas streams via packed-bed dielectric barrier discharge plasmas. J Phys D Appl Phys 38:4160–4167. https://doi.org/10.1088/0022-3727/38/23/004

    Article  CAS  Google Scholar 

  17. Ye Z, Veerapandian SKP, Onyshchenko I et al (2017) An in-depth investigation of toluene decomposition with a glass beads-packed bed dielectric barrier discharge reactor. Ind Eng Chem Res 56:10215–10226. https://doi.org/10.1021/acs.iecr.7b00963

    Article  CAS  Google Scholar 

  18. Wan Y, Fan X, Zhu T (2011) Removal of low-concentration formaldehyde in air by DC corona discharge plasma. Chem Eng J 171:314–319. https://doi.org/10.1016/j.cej.2011.04.011

    Article  CAS  Google Scholar 

  19. Du CM, Yan JH, Cheron B (2007) Decomposition of toluene in a gliding arc discharge plasma reactor. Plasma Sources Sci Technol 16:791–797. https://doi.org/10.1088/0963-0252/16/4/014

    Article  CAS  Google Scholar 

  20. Saleem F, Harris J, Zhang K, Harvey A (2020) Non-thermal plasma as a promising route for the removal of tar from the product gas of biomass gasification – A critical review. Chem Eng J 382:122761. https://doi.org/10.1016/j.cej.2019.122761

    Article  CAS  Google Scholar 

  21. Liu L, Zhang Z, Das S, Kawi S (2019) Reforming of tar from biomass gasification in a hybrid catalysis-plasma system: a review. Appl Catal B Environ 250:250–272. https://doi.org/10.1016/j.apcatb.2019.03.039

    Article  CAS  Google Scholar 

  22. Indarto A, Yang DR, Azhari CH et al (2007) Advanced VOCs decomposition method by gliding arc plasma. Chem Eng J 131:337–341. https://doi.org/10.1016/j.cej.2006.11.009

    Article  CAS  Google Scholar 

  23. Zhu F, Li X, Zhang H et al (2016) Destruction of toluene by rotating gliding arc discharge. Fuel 176:78–85. https://doi.org/10.1016/j.fuel.2016.02.065

    Article  CAS  Google Scholar 

  24. Bahri M, Haghighat F (2014) Plasma-based indoor air cleaning technologies: the state of the art-review. Clean - Soil, Air, Water 42:1667–1680. https://doi.org/10.1002/clen.201300296

    Article  CAS  Google Scholar 

  25. Tu X, Whitehead JC (2014) Plasma dry reforming of methane in an atmospheric pressure AC gliding arc discharge: Co-generation of syngas and carbon nanomaterials. Int J Hydrogen Energy 39:9658–9669. https://doi.org/10.1016/j.ijhydene.2014.04.073

    Article  CAS  Google Scholar 

  26. Zhu X, Gao X, Qin R et al (2015) Plasma-catalytic removal of formaldehyde over Cu-Ce catalysts in a dielectric barrier discharge reactor. Appl Catal B Environ 170–171:293–300. https://doi.org/10.1016/j.apcatb.2015.01.032

    Article  CAS  Google Scholar 

  27. Hoseini S, Rahemi N, Allahyari S, Tasbihi M (2019) Application of plasma technology in the removal of volatile organic compounds (BTX) using manganese oxide nano-catalysts synthesized from spent batteries. J Clean Prod 232:1134–1147. https://doi.org/10.1016/j.jclepro.2019.05.227

    Article  CAS  Google Scholar 

  28. Zeng X, Li B, Liu R et al (2020) Investigation of promotion effect of Cu doped MnO2 catalysts on ketone-type VOCs degradation in a one-stage plasma-catalysis system. Chem Eng J 384:123362. https://doi.org/10.1016/j.cej.2019.123362

    Article  CAS  Google Scholar 

  29. Liu L, Liu Y, Song J et al (2019) Plasma-enhanced steam reforming of different model tar compounds over Ni-based fusion catalysts. J Hazard Mater 377:24–33. https://doi.org/10.1016/j.jhazmat.2019.05.019

    Article  CAS  PubMed  Google Scholar 

  30. Xu W, Jiang X, Chen H et al (2020) Adsorption-discharge plasma system for toluene decomposition over Ni-SBA catalyst: In situ observation and humidity influence study. Chem Eng J 382:122950. https://doi.org/10.1016/j.cej.2019.122950

    Article  CAS  Google Scholar 

  31. Yap D, Tatibouët JM, Batiot-Dupeyrat C (2018) Catalyst assisted by non-thermal plasma in dry reforming of methane at low temperature. Catal Today 299:263–271. https://doi.org/10.1016/j.cattod.2017.07.020

    Article  CAS  Google Scholar 

  32. Van Durme J, Dewulf J, Leys C, Van Langenhove H (2008) Combining non-thermal plasma with heterogeneous catalysis in waste gas treatment: a review. Appl Catal B Environ 78:324–333. https://doi.org/10.1016/j.apcatb.2007.09.035

    Article  CAS  Google Scholar 

  33. Huang H, Ye D, Leung DYC et al (2011) Byproducts and pathways of toluene destruction via plasma-catalysis. J Mol Catal A Chem 336:87–93. https://doi.org/10.1016/j.molcata.2011.01.002

    Article  CAS  Google Scholar 

  34. Kamal MS, Razzak SA, Hossain MM (2016) Catalytic oxidation of volatile organic compounds (VOCs)—a review. Atmos Environ 140:117–134. https://doi.org/10.1016/j.atmosenv.2016.05.031

    Article  CAS  Google Scholar 

  35. Yang P, Yang S, Shi Z et al (2015) Deep oxidation of chlorinated VOCs over CeO2-based transition metal mixed oxide catalysts. Appl Catal B Environ 162:227–235. https://doi.org/10.1016/j.apcatb.2014.06.048

    Article  CAS  Google Scholar 

  36. Aguilera DA, Perez A, Molina R, Moreno S (2011) Cu-Mn and Co-Mn catalysts synthesized from hydrotalcites and their use in the oxidation of VOCs. Appl Catal B Environ 104:144–150. https://doi.org/10.1016/j.apcatb.2011.02.019

    Article  CAS  Google Scholar 

  37. Yang P, Zuo S, Zhou R (2017) Synergistic catalytic effect of (Ce, Cr)xO2 and HZSM-5 for elimination of chlorinated organic pollutants. Chem Eng J 323:160–170. https://doi.org/10.1016/j.cej.2017.04.002

    Article  CAS  Google Scholar 

  38. Lahousse C, Bernier A, Grange P et al (1998) Evaluation of γ-MnO2 as a VOC removal catalyst: Comparison with a noble metal catalyst. J Catal 178:214–225. https://doi.org/10.1006/jcat.1998.2148

    Article  CAS  Google Scholar 

  39. Dhandapani B, Oyama ST (1997) Gas phase ozone decomposition catalysts. Appl Catal B Environ 11:129–166. https://doi.org/10.1016/S0926-3373(96)00044-6

    Article  CAS  Google Scholar 

  40. Ye Z, Giraudon JM, De Geyter N et al (2018) The design of MnOx based catalyst in post-plasma catalysis configuration for toluene abatement. Catalysts 8:91. https://doi.org/10.3390/catal8020091

    Article  CAS  Google Scholar 

  41. Wang Y, Yang D, Li S et al (2019) Layered copper manganese oxide for the efficient catalytic CO and VOCs oxidation. Chem Eng J 357:258–268. https://doi.org/10.1016/j.cej.2018.09.156

    Article  CAS  Google Scholar 

  42. Van Durme J, Dewulf J, Demeestere K et al (2009) Post-plasma catalytic technology for the removal of toluene from indoor air: Effect of humidity. Appl Catal B Environ 87:78–83. https://doi.org/10.1016/j.apcatb.2008.08.015

    Article  CAS  Google Scholar 

  43. Li Y, Fan Z, Shi J et al (2014) Post plasma-catalysis for VOCs degradation over different phase structure MnO2 catalysts. Chem Eng J 241:251–258. https://doi.org/10.1016/j.cej.2013.12.036

    Article  CAS  Google Scholar 

  44. Nguyen Dinh MT, Giraudon JM, Vandenbroucke AM et al (2016) Manganese oxide octahedral molecular sieve K-OMS-2 as catalyst in post plasma-catalysis for trichloroethylene degradation in humid air. J Hazard Mater 314:88–94. https://doi.org/10.1016/j.jhazmat.2016.04.027

    Article  CAS  PubMed  Google Scholar 

  45. Zhu X, Liu S, Cai Y et al (2016) Post-plasma catalytic removal of methanol over Mn-Ce catalysts in an atmospheric dielectric barrier discharge. Appl Catal B Environ 183:124–132. https://doi.org/10.1016/j.apcatb.2015.10.013

    Article  CAS  Google Scholar 

  46. Dinh MTN, Giraudon J-M, Vandenbroucke AM et al (2015) Post plasma-catalysis for total oxidation of trichloroethylene over Ce–Mn based oxides synthesized by a modified “redox-precipitation route.” Appl Catal B Environ 172–173:65–72. https://doi.org/10.1016/j.apcatb.2015.02.013

    Article  CAS  Google Scholar 

  47. Chang T, Shen Z, Huang Y et al (2018) Post-plasma-catalytic removal of toluene using MnO2-Co3O4 catalysts and their synergistic mechanism. Chem Eng J 348:15–25. https://doi.org/10.1016/j.cej.2018.04.186

    Article  CAS  Google Scholar 

  48. Zhou J, Qin L, Xiao W et al (2017) Oriented growth of layered-MnO2 nanosheets over α-MnO2 nanotubes for enhanced room-temperature HCHO oxidation. Appl Catal B Environ 207:233–243. https://doi.org/10.1016/j.apcatb.2017.01.083

    Article  CAS  Google Scholar 

  49. Lin X, Li S, He H et al (2018) Evolution of oxygen vacancies in MnOx-CeO2 mixed oxides for soot oxidation. Appl Catal B Environ 223:91–102. https://doi.org/10.1016/j.apcatb.2017.06.071

    Article  CAS  Google Scholar 

  50. Craciun R, Nentwick B, Hadjiivanov K, Knözinger H (2003) Structure and redox properties of MnOx/Yttrium-stabilized zirconia (YSZ) catalyst and its used in CO and CH4 oxidation. Appl Catal A Gen 243:67–79. https://doi.org/10.1016/S0926-860X(02)00538-0

    Article  CAS  Google Scholar 

  51. Santos VP, Pereira MFR, Órfão JJM, Figueiredo JL (2010) The role of lattice oxygen on the activity of manganese oxides towards the oxidation of volatile organic compounds. Appl Catal B Environ 99:353–363. https://doi.org/10.1016/j.apcatb.2010.07.007

    Article  CAS  Google Scholar 

  52. Sun M, Lan B, Lin T et al (2013) Controlled synthesis of nanostructured manganese oxide: Crystalline evolution and catalytic activities. CrystEngComm 15:7010–7018. https://doi.org/10.1039/c3ce40603b

    Article  CAS  Google Scholar 

  53. Cheng G, Yu L, He B et al (2017) Catalytic combustion of dimethyl ether over α-MnO2 nanostructures with different morphologies. Appl Surf Sci 409:223–231. https://doi.org/10.1016/j.apsusc.2017.02.218

    Article  CAS  Google Scholar 

  54. Kim SC, Shim WG (2010) Catalytic combustion of VOCs over a series of manganese oxide catalysts. Appl Catal B Environ 98:180–185. https://doi.org/10.1016/j.apcatb.2010.05.027

    Article  CAS  Google Scholar 

  55. Durand JP, Senanayake SD, Suib SL, Mullins DR (2010) Reaction of formic acid over amorphous manganese oxide catalytic systems: an in situ study. J Phys Chem C 114:20000–20006. https://doi.org/10.1021/jp104629j

    Article  CAS  Google Scholar 

  56. Oyama ST (2000) Chemical and catalytic properties of ozone. Catal Rev Sci Eng 42:279–322. https://doi.org/10.1081/CR-100100263

    Article  CAS  Google Scholar 

  57. Kim HH, Ogata A, Futamura S (2006) Effect of different catalysts on the decomposition of VOCs using flow-type plasma-driven catalysis. IEEE Trans Plasma Sci 34:984–995. https://doi.org/10.1109/TPS.2006.875728

    Article  CAS  Google Scholar 

  58. Lian Z, Ma J, He H (2015) Decomposition of high-level ozone under high humidity over Mn-Fe catalyst: the influence of iron precursors. Catal Commun 59:156–160. https://doi.org/10.1016/j.catcom.2014.10.005

    Article  CAS  Google Scholar 

  59. Jia J, Zhang P, Chen L (2016) Catalytic decomposition of gaseous ozone over manganese dioxides with different crystal structures. Appl Catal B Environ 189:210–218. https://doi.org/10.1016/j.apcatb.2016.02.055

    Article  CAS  Google Scholar 

  60. Li W, Gibbs GV, Oyama ST (1998) Mechanism of ozone decomposition on a manganese oxide catalyst. 1. In situ Raman spectroscopy and Ab initio molecular orbital calculations. J Am Chem Soc 120:9041–9046. https://doi.org/10.1021/ja981441+

    Article  CAS  Google Scholar 

  61. Li W, Oyama ST (1998) Mechanism of ozone decomposition on a manganese oxide catalyst 2. Steady-state and transient kinetic studies. J Am Chem Soc 120:9047–9052. https://doi.org/10.1021/ja9814422

    Article  CAS  Google Scholar 

  62. Vandenbroucke AM, Mora M, Jiménez-Sanchidrián C et al (2014) TCE abatement with a plasma-catalytic combined system using MnO2 as catalyst. Appl Catal B Environ 156–157:94–100. https://doi.org/10.1016/j.apcatb.2014.03.007

    Article  CAS  Google Scholar 

  63. Huang H, Ye D, Guan X (2008) The simultaneous catalytic removal of VOCs and O3 in a post-plasma. Catal Today 139:43–48. https://doi.org/10.1016/j.cattod.2008.08.029

    Article  CAS  Google Scholar 

  64. Yang S, Yang H, Yang J et al (2020) Three-dimensional hollow urchin α-MnO2 for enhanced catalytic activity towards toluene decomposition in post-plasma catalysis. Chem Eng J 402:126154. https://doi.org/10.1016/j.cej.2020.126154

    Article  CAS  Google Scholar 

  65. Li D, Wu X, Chen Y (2013) Synthesis of hierarchical hollow MnO2 microspheres and potential application in abatement of VOCs. J Phys Chem C 117:11040–11046. https://doi.org/10.1021/jp312745n

    Article  CAS  Google Scholar 

  66. Miao L, Wang J, Zhang P (2019) Review on manganese dioxide for catalytic oxidation of airborne formaldehyde. Appl Surf Sci 466:441–453. https://doi.org/10.1016/j.apsusc.2018.10.031

    Article  CAS  Google Scholar 

  67. Xu H, Yan N, Qu Z et al (2017) Gaseous heterogeneous catalytic reactions over Mn-based oxides for environmental applications: a critical review. Environ Sci Technol 51:8879–8892. https://doi.org/10.1021/acs.est.6b06079

    Article  CAS  PubMed  Google Scholar 

  68. Zhang Z, Jiang Z, Shangguan W (2016) Low-temperature catalysis for VOCs removal in technology and application: a state-of-the-art review. Catal Today 264:270–278. https://doi.org/10.1016/j.cattod.2015.10.040

    Article  CAS  Google Scholar 

  69. Wang B, Chi C, Xu M et al (2017) Plasma-catalytic removal of toluene over CeO2-MnOx catalysts in an atmosphere dielectric barrier discharge. Chem Eng J 322:679–692. https://doi.org/10.1016/j.cej.2017.03.153

    Article  CAS  Google Scholar 

  70. Qu Z, Gao K, Fu Q, Qin Y (2014) Low-temperature catalytic oxidation of toluene over nanocrystal-like Mn-Co oxides prepared by two-step hydrothermal method. Catal Commun 52:31–35. https://doi.org/10.1016/j.catcom.2014.03.035

    Article  CAS  Google Scholar 

  71. Chen J, Chen X, Xu W et al (2017) Hydrolysis driving redox reaction to synthesize Mn-Fe binary oxides as highly active catalysts for the removal of toluene. Chem Eng J 330:281–293. https://doi.org/10.1016/j.cej.2017.07.147

    Article  CAS  Google Scholar 

  72. Liu G, Yue R, Jia Y et al (2013) Catalytic oxidation of benzene over Ce-Mn oxides synthesized by flame spray pyrolysis. Particuology 11:454–459. https://doi.org/10.1016/j.partic.2012.09.013

    Article  CAS  Google Scholar 

  73. Du J, Qu Z, Dong C et al (2018) Low-temperature abatement of toluene over Mn-Ce oxides catalysts synthesized by a modified hydrothermal approach. Appl Surf Sci 433:1025–1035. https://doi.org/10.1016/j.apsusc.2017.10.116

    Article  CAS  Google Scholar 

  74. Ma J, Wang C, He H (2017) Transition metal doped cryptomelane-type manganese oxide catalysts for ozone decomposition. Appl Catal B Environ 201:503–510. https://doi.org/10.1016/j.apcatb.2016.08.050

    Article  CAS  Google Scholar 

  75. Liu Y, Zhang P (2017) Catalytic decomposition of gaseous ozone over todorokite-type manganese dioxides at room temperature: Effects of cerium modification. Appl Catal A Gen 530:102–110. https://doi.org/10.1016/j.apcata.2016.11.028

    Article  CAS  Google Scholar 

  76. Jia J, Yang W, Zhang P, Zhang J (2017) Facile synthesis of Fe-modified manganese oxide with high content of oxygen vacancies for efficient airborne ozone destruction. Appl Catal A Gen 546:79–86. https://doi.org/10.1016/j.apcata.2017.08.013

    Article  CAS  Google Scholar 

  77. Sultana S, Ye Z, Veerapandian SKP et al (2018) Synthesis and catalytic performances of K-OMS-2, Fe/K-OMS-2 and Fe-K-OMS-2 in post plasma-catalysis for dilute TCE abatement. Catal Today 307:20–28. https://doi.org/10.1016/j.cattod.2017.05.078

    Article  CAS  Google Scholar 

  78. Hayashi K, Yasui H, Tanaka M et al (2009) Temperature dependence of toluene decomposition behavior in the discharge-catalyst hybrid reactor. IEEE T IND Appl 45(5):1553–1558. https://doi.org/10.1109/TIA.2009.2027101

    Article  CAS  Google Scholar 

  79. Veerapandian SKP, Ye Z, Giraudon JM et al (2019) Plasma assisted Cu-Mn mixed oxide catalysts for trichloroethylene abatement in moist air. J Hazard Mater 379:120781. https://doi.org/10.1016/j.jhazmat.2019.120781

    Article  CAS  PubMed  Google Scholar 

  80. Wang T, Zhang H, Yan Y (2017) High efficiency of isopropanol combustion over cobalt oxides modified ZSM-5 zeolite membrane catalysts on paper-like stainless steel fibers. J Solid State Chem 251:55–60. https://doi.org/10.1016/j.jssc.2017.04.003

    Article  CAS  Google Scholar 

  81. Drenchev N, Spassova I, Ivanova E et al (2013) Cooperative effect of Ce and Mn in MnCe/Al2O3 environmental catalysts. Appl Catal B Environ 138–139:362–372. https://doi.org/10.1016/j.apcatb.2013.03.012

    Article  CAS  Google Scholar 

  82. Fang R, Huang H, Ji J et al (2018) Efficient MnOx supported on coconut shell activated carbon for catalytic oxidation of indoor formaldehyde at room temperature. Chem Eng J 334:2050–2057. https://doi.org/10.1016/j.cej.2017.11.176

    Article  CAS  Google Scholar 

  83. Zhang C, Huang H, Li G et al (2019) Zeolitic acidity as a promoter for the catalytic oxidation of toluene over MnOx/HZSM-5 catalysts. Catal Today 327:374–381. https://doi.org/10.1016/j.cattod.2018.03.019

    Article  CAS  Google Scholar 

  84. Sun P, Wang W, Dai X et al (2016) Mechanism study on catalytic oxidation of chlorobenzene over MnxCe1-xO2/H-ZSM5 catalysts under dry and humid conditions. Appl Catal B Environ 198:389–397. https://doi.org/10.1016/j.apcatb.2016.05.076

    Article  CAS  Google Scholar 

  85. Chojnacka A, Molenda M, Chmielarz L et al (2015) Ceria based novel nanocomposites catalysts MnxCe1−xO2/α-Al2O3 for low-temperature combustion of methanol. Catal Today 257:104–110. https://doi.org/10.1016/j.cattod.2015.02.019

    Article  CAS  Google Scholar 

  86. Wang M, Zhang P, Li J, Jiang C (2014) The effects of Mn loading on the structure and ozone decomposition activity of MnOx supported on activated carbon. Cuihua Xuebao/Chinese J Catal 35:335–341. https://doi.org/10.1016/s1872-2067(12)60756-6

    Article  CAS  Google Scholar 

  87. Radhakrishnan R, Oyama ST, Chen JG, Asakura K (2001) Electron transfer effects in ozone decomposition on supported manganese oxide. J Phys Chem B 105:4245–4253. https://doi.org/10.1021/jp003246z

    Article  CAS  Google Scholar 

  88. Chang T, Lu J, Shen Z et al (2019) Post plasma catalysis for the removal of Acetaldehyde using Mn-Co/HZSM-5 catalysts. Ind Eng Chem Res 58:14719–14728. https://doi.org/10.1021/acs.iecr.9b02668

    Article  CAS  Google Scholar 

  89. Chang T, Lu J, Shen Z et al (2019) Simulation and optimization of the post plasma-catalytic system for toluene degradation by a hybrid ANN and NSGA-II method. Appl Catal B Environ 244:107–119. https://doi.org/10.1016/j.apcatb.2018.11.025

    Article  CAS  Google Scholar 

  90. Huang H, Chen C, Yang R et al (2020) Remarkable promotion effect of lauric acid on Mn-MIL-100 for non-thermal plasma-catalytic decomposition of toluene. Appl Surf Sci 503:144290. https://doi.org/10.1016/j.apsusc.2019.144290

    Article  CAS  Google Scholar 

  91. Jarrige J, Vervisch P (2009) Plasma-enhanced catalysis of propane and isopropyl alcohol at ambient temperature on a MnO2-based catalyst. Appl Catal B Environ 90:74–82. https://doi.org/10.1016/j.apcatb.2009.02.015

    Article  CAS  Google Scholar 

  92. Ge H, Hu D, Li X et al (2015) Removal of low-concentration benzene in indoor air with plasma-MnO2 catalysis system. J Electrostat 76:216–221. https://doi.org/10.1016/j.elstat.2015.06.003

    Article  CAS  Google Scholar 

  93. Jiang N, Qiu C, Guo L et al (2019) Plasma-catalytic destruction of xylene over Ag-Mn mixed oxides in a pulsed sliding discharge reactor. J Hazard Mater 369:611–620. https://doi.org/10.1016/j.jhazmat.2019.02.087

    Article  CAS  PubMed  Google Scholar 

  94. Sultana S, Vandenbroucke AM, Mora M et al (2019) Post plasma-catalysis for trichloroethylene decomposition over CeO2 catalyst: Synergistic effect and stability test. Appl Catal B Environ 253:49–59. https://doi.org/10.1016/j.apcatb.2019.03.077

    Article  CAS  Google Scholar 

  95. Tang X, Feng F, Ye L et al (2013) Removal of dilute VOCs in air by post-plasma catalysis over Ag-based composite oxide catalysts. Catal Today 211:39–43. https://doi.org/10.1016/j.cattod.2013.04.026

    Article  CAS  Google Scholar 

  96. Li Y, Fan Z, Shi J et al (2015) Modified manganese oxide octahedral molecular sieves M″-OMS-2 (M″ = Co, Ce, Cu) as catalysts in post plasma-catalysis for acetaldehyde degradation. Catal Today 256:178–185. https://doi.org/10.1016/j.cattod.2015.02.003

    Article  CAS  Google Scholar 

  97. Demidyuk V, Whitehead JC (2007) Influence of temperature on gas-phase toluene decomposition in plasma-catalytic system. Plasma Chem Plasma Process 27:85–94. https://doi.org/10.1007/s11090-006-9045-z

    Article  CAS  Google Scholar 

  98. Grossmannova H, Neirynck D, Leys C (2006) Atmospheric discharge combined with Cu-Mn/Al2O3 catalyst unit for the removal of toluene. Czechoslov J Phys 56:B1156–B1161. https://doi.org/10.1007/s10582-006-0343-8

    Article  Google Scholar 

  99. Van Durme J, Dewulf J, Sysmans W et al (2007) Efficient toluene abatement in indoor air by a plasma catalytic hybrid system. Appl Catal B Environ 74:161–169. https://doi.org/10.1016/j.apcatb.2007.02.006

    Article  CAS  Google Scholar 

  100. Lyulyukin MN, Besov AS, Vorontsov AV (2016) Acetone and ethanol vapor oxidation via negative atmospheric corona discharge over titania-based catalysts. Appl Catal B Environ 183:18–27. https://doi.org/10.1016/j.apcatb.2015.10.025

    Article  CAS  Google Scholar 

  101. Bo Z, Hao H, Yang S et al (2018) Vertically-oriented graphenes supported Mn3O4 as advanced catalysts in post plasma-catalysis for toluene decomposition. Appl Surf Sci 436:570–578. https://doi.org/10.1016/j.apsusc.2017.12.081

    Article  CAS  Google Scholar 

  102. Zhu G, Zhu J, Jiang W et al (2017) Surface oxygen vacancy induced α-MnO2 nanofiber for highly efficient ozone elimination. Appl Catal B Environ 209:729–737. https://doi.org/10.1016/j.apcatb.2017.02.068

    Article  CAS  Google Scholar 

  103. Li X, Ma J, Zhang C et al (2019) Facile synthesis of Ag-modified manganese oxide for effective catalytic ozone decomposition. J Environ Sci (China) 80:159–168. https://doi.org/10.1016/j.jes.2018.12.008

    Article  Google Scholar 

  104. Yang Y, Jia J, Liu Y, Zhang P (2018) The effect of tungsten doping on the catalytic activity of α-MnO2 nanomaterial for ozone decomposition under humid condition. Appl Catal A Gen 562:132–141. https://doi.org/10.1016/j.apcata.2018.06.006

    Article  CAS  Google Scholar 

  105. Gopi T, Swetha G, Chandra Shekar S et al (2017) Catalytic decomposition of ozone on nanostructured potassium and proton containing δ-MnO2 catalysts. Catal Commun 92:51–55. https://doi.org/10.1016/j.catcom.2017.01.002

    Article  CAS  Google Scholar 

  106. Liu Y, Zhang P (2017) Removing Surface Hydroxyl Groups of Ce-Modified MnO2 to Significantly Improve Its Stability for Gaseous Ozone Decomposition. J Phys Chem C 121:23488–23497. https://doi.org/10.1021/acs.jpcc.7b07931

    Article  CAS  Google Scholar 

  107. Tatibouët JM, Valange S, Touati H (2019) Near-ambient temperature ozone decomposition kinetics on manganese oxide-based catalysts. Appl Catal A Gen 569:126–133. https://doi.org/10.1016/j.apcata.2018.10.026

    Article  CAS  Google Scholar 

  108. Rao Y, Zeng D, Cao X et al (2019) Synthesis of doped MnOx/diatomite composites for catalyzing ozone decomposition. Ceram Int 45:6966–6971. https://doi.org/10.1016/j.ceramint.2018.12.195

    Article  CAS  Google Scholar 

  109. Harling AM, Glover DJ, Whitehead JC, Zhang K (2009) The role of ozone in the plasma-catalytic destruction of environmental pollutants. Appl Catal B Environ 90:157–161. https://doi.org/10.1016/j.apcatb.2009.03.005

    Article  CAS  Google Scholar 

  110. Ye L, Feng F, Liu J et al (2014) Toluene decomposition by a two-stage hybrid plasma catalyst system in dry air. IEEE Trans Plasma Sci 42:3529–3538. https://doi.org/10.1109/TPS.2014.2360407

    Article  CAS  Google Scholar 

  111. Norsic C, Tatibouët JM, Batiot-Dupeyrat C, Fourré E (2018) Methanol oxidation in dry and humid air by dielectric barrier discharge plasma combined with MnO2-CuO based catalysts. Chem Eng J 347:944–952. https://doi.org/10.1016/j.cej.2018.04.065

    Article  CAS  Google Scholar 

  112. Penetrante BM, Hsiao MC, Bardsley JN et al (1995) Electron beam and pulsed corona processing of carbon tetrachloride in atmospheric pressure gas streams. Phys Lett A 209:69–77. https://doi.org/10.1016/0375-9601(95)00789-4

    Article  CAS  Google Scholar 

  113. Futamura S, Zhang A, Yamamoto T (1999) Mechanisms for formation of inorganic byproducts in plasma chemical processing of hazardous air pollutants. IEEE Trans Ind Appl 35:760–766. https://doi.org/10.1109/28.777182

    Article  Google Scholar 

  114. Klett C, Touchard S, Vega A et al (2011) An experimental and modelling study of acetaldehyde oxidation by an atmospheric nonthermal plasma discharge. Acta Technica CSAV 56:T43–T55. https://www.researchgate.net/publication/286948623

    Google Scholar 

  115. Klett C, Touchard S, Vega-Gonzalez A et al (2012) Experimental and modeling study of the oxidation of acetaldehyde in an atmospheric-pressure pulsed corona discharge. Plasma Sources Sci Technol 21:45001. https://doi.org/10.1088/0963-0252/21/4/045001

    Article  CAS  Google Scholar 

  116. Kohno H, Berezin AA, Chang JS (1998) Destruction of volatile organic compounds used in a semiconductor industry by a capillary tube discharge reactor. IEEE Trans Ind Appl 34:953–966. https://doi.org/10.1109/28.720435

    Article  CAS  Google Scholar 

  117. Chang MB, Chang CC (1997) Destruction and removal of toluene and MEK from gas streams with silent discharge plasmas. AIChE J 43:1325–1330. https://doi.org/10.1002/aic.690430521

    Article  CAS  Google Scholar 

  118. Sakai S, Takahashi K, Satoh K, Itoh H (2016) Decomposition characteristics of benzene, toluene and xylene in an atmospheric pressure DC corona discharge II. Characteristics of deposited by-products and decomposition process. J Adv Oxid Technol 19:59–65. https://doi.org/10.1515/jaots-2016-0107

    Article  CAS  Google Scholar 

  119. Liu S, Mei D, Wang L, Tu X (2017) Steam reforming of toluene as biomass tar model compound in a gliding arc discharge reactor. Chem Eng J 307:793–802. https://doi.org/10.1016/j.cej.2016.08.005

    Article  CAS  Google Scholar 

  120. Jiang N, Zhao Y, Shang K et al (2020) Degradation of toluene by pulse-modulated multistage DBD plasma: Key parameters optimization through response surface methodology (RSM) and degradation pathway analysis. J Hazard Mater 393:122365. https://doi.org/10.1016/j.jhazmat.2020.122365

    Article  CAS  PubMed  Google Scholar 

  121. Gopi T, Swetha G, Shekar SC et al (2019) Ozone catalytic oxidation of toluene over 13X zeolite supported metal oxides and the effect of moisture on the catalytic process. Arab J Chem 12:4502–4513. https://doi.org/10.1016/j.arabjc.2016.07.018

    Article  CAS  Google Scholar 

  122. Guan J, Wang D, Yuan H et al (2019) Experimental study on catalytic oxidation of toluene with manganese catalysts and ozone at low temperature. IOP Conf Ser Earth Environ Sci 310:042028. https://doi.org/10.1088/1755-1315/310/4/042028

    Article  Google Scholar 

  123. Huang R, Lu M, Wang P et al (2015) Enhancement of the non-thermal plasma-catalytic system with different zeolites for toluene removal. RSC Adv 5:72113–72120. https://doi.org/10.1039/c5ra13604k

    Article  CAS  Google Scholar 

  124. Song H, Peng Y, Liu S et al (2019) The roles of variousplasma active species in toluene degradation by non-thermal plasma and plasma catalysis. Plasma Chem Plasma Process 39:1469–1482. https://doi.org/10.1007/s11090-019-10013-w

    Article  CAS  Google Scholar 

  125. Jiang Z, Chen MX, Shi J et al (2015) Catalysis removal of indoor volatile organic compounds in room temperature: From photocatalysis to active species assistance catalysis. Catal Surv from Asia 19:1–16. https://doi.org/10.1007/s10563-014-9177-8

    Article  CAS  Google Scholar 

  126. Chen HL, Lee HM, Chen SH et al (2009) Removal of volatile organic compounds by single-stage and two-stage plasma catalysis systems: A review of the performance enhancement mechanisms, current status, and suitable applications. Environ Sci Technol 43:2216–2227. https://doi.org/10.1021/es802679b

    Article  CAS  PubMed  Google Scholar 

  127. Bogaerts A, Tu X, Whitehead JC et al (2020) The 2020 plasma catalysis roadmap. J Phys D Appl Phys 53:443001. https://doi.org/10.1088/1361-6463/ab9048

    Article  CAS  Google Scholar 

  128. Jiang N, Zhao Y, Qiu C et al (2019) Enhanced catalytic performance of CoO-CeO2 for synergetic degradation of toluene in multistage sliding plasma system through response surface methodology (RSM). Appl Catal B Environ 259:118061. https://doi.org/10.1016/j.apcatb.2019.118061

    Article  CAS  Google Scholar 

  129. Jiang N, Hu J, Li J et al (2016) Plasma-catalytic degradation of benzene over Ag-Ce bimetallic oxide catalysts using hybrid surface/packed-bed discharge plasmas. Appl Catal B Environ 184:355–363. https://doi.org/10.1016/j.apcatb.2015.11.044

    Article  CAS  Google Scholar 

  130. Futamura S, Yamamoto T (1997) Byproduct identification and mechanism determination in plasma chemical decomposition of trichloroethylene. IEEE Trans Ind Appl 33:447–453. https://doi.org/10.1109/28.568009

    Article  CAS  Google Scholar 

  131. Lee HM, Chang MB (2003) Abatement of gas-phase p-xylene via dielectric barrier discharges. Plasma Chem Plasma Process 23:541–558. https://doi.org/10.1023/A:1023239122885

    Article  CAS  Google Scholar 

  132. Koeta O, Blin-Simiand N, Faider W et al (2012) Decomposition of acetaldehyde in atmospheric pressure filamentary nitrogen plasma. Plasma Chem Plasma Process 32:991–1023. https://doi.org/10.1007/s11090-012-9388-6

    Article  CAS  Google Scholar 

  133. Lu M, Huang R, Wu J et al (2015) On the performance and mechanisms of toluene removal by FeOx/SBA-15-assisted non-thermal plasma at atmospheric pressure and room temperature. Catal Today 242:274–286. https://doi.org/10.1016/j.cattod.2014.07.026

    Article  CAS  Google Scholar 

  134. Carson JS (2005) Introduction to Modeling and Simulation. In: Proceedings of the Winter Simulation Conference. IEEE, 8903409. https://doi.org/10.1109/WSC.2005.1574235

    Article  Google Scholar 

  135. Graef W (2012) Zero-dimensional models for plasma chemistry. PhD thesis, Technische Universiteit Eindhoven. https://doi.org/10.6100/IR733421

    Book  Google Scholar 

  136. Aerts R, Tu X, De Bie C et al (2012) An investigation into the dominant reactions for ethylene destruction in non-thermal atmospheric plasmas. Plasma Process Polym 9:994–1000. https://doi.org/10.1002/ppap.201100168

    Article  CAS  Google Scholar 

  137. Evans D, Rosocha LA, Anderson GK et al (1993) Plasma remediation of trichloroethylene in silent discharge plasmas. J Appl Phys 74:5378–5386. https://doi.org/10.1063/1.354241

    Article  CAS  Google Scholar 

  138. Snoeckx R, Aerts R, Tu X, Bogaerts A (2013) Plasma-based dry reforming: a computational study ranging from the nanoseconds to seconds time scale. J Phys Chem C 117:4957–4970. https://doi.org/10.1021/jp311912b

    Article  CAS  Google Scholar 

  139. Snoeckx R, Setareh M, Aerts R et al (2013) Influence of N2 concentration in a CH4/N2 dielectric barrier discharge used for CH4 conversion into H2. Int J Hydrogen Energy 38:16098–16120. https://doi.org/10.1016/j.ijhydene.2013.09.136

    Article  CAS  Google Scholar 

  140. Van Dijk J, Hartgers B, Jonkers J, Van Der Mullen J (2001) Collisional radiative models with multiple transport-sensitive levels—application to high electron density mercury discharges. J Phys D Appl Phys 34:1499–1509. https://doi.org/10.1088/0022-3727/34/10/310

    Article  Google Scholar 

  141. Chung TH, Yoon HJ, Seo DC (1999) Global model and scaling laws for inductively coupled oxygen discharge plasmas. J Appl Phys 86:3536–3542. https://doi.org/10.1063/1.371255

    Article  CAS  Google Scholar 

  142. Broks BHP, van der Mullen JJAM (2006) Creating a global plasma model using disturbed bilateral relations. J Phys Conf Ser 44:53–59. https://doi.org/10.1088/1742-6596/44/1/006

    Article  Google Scholar 

  143. Munro JJ, Tennyson J (2008) Global plasma simulations using dynamically generated chemical models. J Vac Sci Technol A Vacuum, Surfaces, Film 26:865–869. https://doi.org/10.1116/1.2889433

    Article  CAS  Google Scholar 

  144. Guerra V, Loureiro J (1995) Non-equilibrium coupled kinetics in stationary N2–O2 discharges. J Phys D Appl Phys 28:1903–1918. https://doi.org/10.1088/0022-3727/28/9/018

    Article  CAS  Google Scholar 

  145. Aǧiral A, Trionfetti C, Lefferts L et al (2008) Propane conversion at ambient temperatures C-C and C-H bond activation using cold plasma in a microreactor. Chem Eng Technol 31:1116–1123. https://doi.org/10.1002/ceat.200800175

    Article  CAS  Google Scholar 

  146. Redolfi M, Aggadi N, Duten X et al (2009) Oxidation of acetylene in atmospheric pressure pulsed corona discharge cell working in the nanosecond regime. Plasma Chem Plasma Process 29:173–195. https://doi.org/10.1007/s11090-009-9169-z

    Article  CAS  Google Scholar 

  147. Li ZG, Hu Z, Xi HL, Cao P (2010) Predictive model of decontamination efficiency of gaseous pollutant by non-equilibrium plasma. J Electrostat 68:390–393. https://doi.org/10.1016/j.elstat.2010.05.010

    Article  CAS  Google Scholar 

  148. Liang CJ, Li KW (2018) Kinetic characterization of plasma-enhanced catalysis of high-concentration volatile organic compounds over mullite supported perovskite catalysts. J Electrostat 96:134–143. https://doi.org/10.1016/j.elstat.2018.10.010

    Article  CAS  Google Scholar 

  149. Affonso Nóbrega PH, Rohani V, Fulcheri L (2019) Non-thermal plasma treatment of volatile organic compounds: a predictive model based on experimental data analysis. Chem Eng J 364:37–44. https://doi.org/10.1016/j.cej.2019.01.100

    Article  CAS  Google Scholar 

  150. Liu SY, Mei DH, Shen Z, Tu X (2014) Nonoxidative conversion of methane in a dielectric barrier discharge reactor: prediction of reaction performance based on neural network model. J Phys Chem C 118:10686–10693. https://doi.org/10.1021/jp502557s

    Article  CAS  Google Scholar 

  151. Derakhshesh M, Abedi J, Omidyeganeh M (2009) Modeling of hazardous air pollutant removal in the pulsed corona discharge. Phys Lett Sect A Gen At Solid State Phys 373:1051–1057. https://doi.org/10.1016/j.physleta.2009.01.041

    Article  CAS  Google Scholar 

  152. Costa G, Assadi AA, Gharib-Abou Ghaida S et al (2017) Study of butyraldehyde degradation and by-products formation by using a surface plasma discharge in pilot scale: process modeling and simulation of relative humidity effect. Chem Eng J 307:785–792. https://doi.org/10.1016/j.cej.2016.07.099

    Article  CAS  Google Scholar 

  153. Hosseinzadeh A, Najafpoor AA, Jafari AJ et al (2018) Application of response surface methodology and artificial neural network modeling to assess non-thermal plasma efficiency in simultaneous removal of BTEX from waste gases: effect of operating parameters and prediction performance. Process Saf Environ Prot 119:261–270. https://doi.org/10.1016/j.psep.2018.08.010

    Article  CAS  Google Scholar 

  154. Tu JV (1996) Advantages and disadvantages of using artificial neural networks versus logistic regression for predicting medical outcomes. J Clin Epidemiol 49:1225–1231. https://doi.org/10.1016/S0895-4356(96)00002-9

    Article  CAS  PubMed  Google Scholar 

  155. Zhu X, Tu X, Mei D et al (2016) Investigation of hybrid plasma-catalytic removal of acetone over CuO/γ-Al2O3 catalysts using response surface method. Chemosphere 155:9–17. https://doi.org/10.1016/j.chemosphere.2016.03.114

    Article  CAS  PubMed  Google Scholar 

  156. Istadi ANAS (2006) Hybrid artificial neural network-genetic algorithm technique for modeling and optimization of plasma reactor. Ind Eng Chem Res 45:6655–6664. https://doi.org/10.1021/ie060562c

    Article  CAS  Google Scholar 

  157. Delagrange S, Pinard L, Tatibouët JM (2006) Combination of a non-thermal plasma and a catalyst for toluene removal from air: Manganese based oxide catalysts. Appl Catal B Environ 68:92–98. https://doi.org/10.1016/j.apcatb.2006.07.002

    Article  CAS  Google Scholar 

  158. Chang T, Chen Q, Fan H et al (2021) Removal mechanism and quantitative control of trichloroethylene in a post-plasma-catalytic system over Mn–Ce/HZSM-5 catalysts. Catal Sci Technol. https://doi.org/10.1039/D1CY00141H

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the project “DepollutAir” of Interreg V France-Wallonie-Vlaanderen, the National Science Foundation of China (NSFC, 41573138), and State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, CAS (SKLLQG1616). Chuanlong Ma also thanks the China Scholarship Council for financial support (No. 201807090104). Yu Huang is also supported by the “Hundred Talent Program” of the Chinese Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenxing Shen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, T., Ma, C., Shen, Z. et al. Mn-Based Catalysts for Post Non-Thermal Plasma Catalytic Abatement of VOCs: A Review on Experiments, Simulations and Modeling. Plasma Chem Plasma Process 41, 1239–1278 (2021). https://doi.org/10.1007/s11090-021-10195-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-021-10195-2

Keywords

Navigation