Skip to main content

Advertisement

Log in

A Laboratory Study of Low-Temperature CO Removal from Mobile Exhaust Gas Using In-Plasma Catalysis

  • Published:
Emission Control Science and Technology Aims and scope Submit manuscript

Abstract

The combination of nonthermal plasma (NTP) with catalytic methods has been shown to improve catalyst light-off temperature via reactions among plasma discharge products and by-products. Thus, NTP may improve selectivity, process, and removal efficiency. In this study, NTP was combined with a catalytic film of mixed metal oxides (ceria-zirconia-gamma alumina layer) in the discharge zone to investigate low-temperature CO removal. Three different reactors having identical geometries were used: a plasma reactor, a catalytic reactor, and a hybrid plasma-catalytic reactor. The CO removal efficiency of 36.5% was achieved using hybrid plasma-catalytic reactor at 80 °C with 860 J/lit. The temperature and flow rate were found to have significant impacts (P-value  ≤ 0.05), which is unexpected due to the key role of hydroxyl and active radicals induced by plasma discharge. Calculated synergy factor of about 2 signals call for further study on the hybrid properties of catalytic efficiency and plasma physics for optimal CO removal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. Platinum group metals

References

  1. Fridman, A., Kennedy, L.A.: Plasma physics and engineering. CRC press, (2004)

  2. Steinmüller, S.O.: Carbon monoxide oxidation at the interface of a direct barrier discharge and a thin layer of yttria-stabilized zirconia: characterization of discharge properties and determination of reaction rates. Ph.D theis, Faculty of Biology and Chemistry, Justus-Liebig-Universität Gießen, Germany (2014)

  3. Leray, A., Makarov, M., Cormier, J.M., Khacef, A.: Plasma-assisted diesel oxidation catalyst: improvement of light-off temperature for CO and unburned hydrocarbons In: Proceedings of the XXth International Conference on Gas Discharges and their Applications 2014, pp. 582–585

  4. Yu, S., Liang, Y., Sun, S., Zhang, K., Zhang, J., Fang, J.: Vehicle exhaust gas clearance by low temperature plasma-driven nano-titanium dioxide film prepared by radiofrequency magnetron sputtering. PLoS One. 8(4), e59974 (2013)

    Article  Google Scholar 

  5. Pârvulescu, V.I., Magureanu, M., Lukes, P.: Plasma chemistry and catalysis in gases and liquids. John Wiley & Sons, (2012)

  6. Lyulyukin, M.N., Besov, A.S., Vorontsov, A.V.: The influence of corona electrodes thickness on the efficiency of plasmachemical oxidation of acetone. Plasma Chem. Plasma Process. 31(1), 23–39 (2011)

    Article  Google Scholar 

  7. Schmidt-Szałowski, K., Krawczyk, K., Sentek, J., Ulejczyk, B., Górska, A., Młotek, M.: Hybrid plasma-catalytic systems for converting substances of high stability, greenhouse gases and VOC. Chem. Eng. Res. Des. 89(12), 2643–2651 (2011). https://doi.org/10.1016/j.cherd.2011.06.018

    Article  Google Scholar 

  8. Kogelschatz, U.: Fundamentals and applications of dielectric barrier discharges. In: HAKONE VII Int. Symp. On High Pressure Low Temperature Plasma Chemistry, Greifswald 2000

  9. Li, C., Liu, R., Lü, Y., Hou, X., Wu, P.: Exploration of nano-surface chemistry for spectral analysis. Chin. Sci. Bull. 58(17), 2017–2026 (2013). https://doi.org/10.1007/s11434-013-5795-1

    Article  Google Scholar 

  10. Whitehead, J.C.: Plasma catalysis: a solution for environmental problems. Pure Appl. Chem. 82(6), 1329–1336 (2010). https://doi.org/10.1351/PAC-CON-10-02-39

    Article  Google Scholar 

  11. Kim, H., Ogata, A., Futamura, S.: Complete oxidation of volatile organic compounds (VOCs) using plasma-driven catalysis and oxygen plasma. Int. J Plasma Environ Sci Technol. 1, 46–51 (2007)

    Google Scholar 

  12. Kim, K. T., Jo, S., Lee, J.O., Lee, D.H., Song, Y.H.: Removal of carbon monoxide by low temperature plasma-catalysis. In: plasma sciences (ICOPS) held with 2014 IEEE international conference on high-power particle BEAMS (BEAMS), 2014 IEEE 41st international conference on 2014, pp. 1-1. IEEE

  13. Kirkpatrick, M.J., Odic, E., Leininger, J.P., Blanchard, G., Rousseau, S., Glipa, X.: Plasma assisted heterogeneous catalytic oxidation of carbon monoxide and unburned hydrocarbons: laboratory-scale investigations. Appl. Catal. B Environ. 106(1), 160–166 (2011). https://doi.org/10.1016/j.apcatb.2011.05.020

    Article  Google Scholar 

  14. Flagan, R.C., Seinfeld, J.H.: Fundamentals of air pollution engineering. Courier Corporation, (2013)

  15. Khacef, A., Cormier, J.M., Pouvesle, J.M., Van, T.L.: Removal of Pollutants by Atmospheric Non Thermal Plasmas. arXiv preprint arXiv:0810.5432 (2008)

  16. Mizuno, A.: Recent progress and applications of non-thermal plasma. Int J Plasma Environ Sci Technol. 3(1), 1–7 (2009)

    Google Scholar 

  17. Brandenburg, R., Barankova, H., Bardos, L., Chmielewski, A.G., Dors, M., Grosch, H., Hołub, M., Jõgi, I., Laan, M., Mizeraczyk, J.: Plasma-based depollution of exhausts: principles, state of the art and future prospects. In: Monitoring, control and effects of air pollution. InTech, (2011)

  18. Matsumoto, T., Wang, D., Namihira, T., Akiyama, H.: Non-thermal plasma technic for air pollution control. AIR POLLUTION–A COMPREHENSIVE PERSPECTIVE (2012)

  19. Xiaokun, H., Jialin, S., Yuanfeng, H., Jin, H., Dongxia, Y.: Influence of Al2O3/CeZrAl composition on the catalytic behavior of Pd/Rh catalyst. J. Rare Earths. 28(1), 59–63 (2010). https://doi.org/10.1016/S1002-0721(09)60051-X

    Article  Google Scholar 

  20. Boullosa-Eiras, S., Zhao, T., Chen, D., Holmen, A.: Effect of the preparation methods and alumina nanoparticles on the catalytic performance of Rh/ZrxCe1− xO2–Al2O3 in methane partial oxidation. Catal. Today. 171(1), 104–115 (2011). https://doi.org/10.1016/j.cattod.2011.04.021

    Article  Google Scholar 

  21. Benjaram, M.R., Thrimurthulu, G., Katta, L.: Nanosized unsupported and alumina-supported ceria-zirconia and ceria-terbia solid solutions for CO oxidation. Chin. J. Catal. 32(5), 800–806 (2011). https://doi.org/10.1016/S1872-2067(10)60227-6

    Article  Google Scholar 

  22. Brinker, C.J., Scherer, G.W.: Sol-gel science: the physics and chemistry of sol-gel processing. Academic press, (2013)

  23. Fu, Q., Cao, C.B., Zhu, H.S.: Preparation of alumina films from a new sol–gel route. Thin Solid Films. 348(1–2), 99–102 (1999). https://doi.org/10.1016/S0040-6090(99)00023-1

    Article  Google Scholar 

  24. Rami, M.L., Meireles, M., Cabane, B., Guizard, Ch.: Colloidal stability for concentrated zirconia aqueous suspensions. Journal of the American Ceramic Society 92(n°S1), pp. S50-S56 (2009)

    Article  Google Scholar 

  25. Kumar, R., Siril, P.F.: Preparation and characterization of polyvinyl alcohol stabilized griseofulvin nanoparticles. Mater Today: Proc. 3(6), 2261–2267 (2016)

    Google Scholar 

  26. Abdul Kareem, T., Anu Kaliani, A.: Synthesis and thermal study of octahedral silver nanoplates in polyvinyl alcohol (PVA). Arab. J. Chem. (2011). https://doi.org/10.1016/j.arabjc.2010.06.054

    Article  Google Scholar 

  27. Nazari, S., Karimi, G., Ghaderi, E., Mansouri Moradian, K., Bagherpor, Z.: Synthesis and characterization of γ-alumina porous nanoparticles from sodium aluminate liquor with two different surfactants. Int J Nanosci Nanotechnol. 12(4), 207–214 (2016)

    Google Scholar 

  28. Paredes, R., Amico, S., d'Oliveira, A.: The effect of roughness and pre-heating of the substrate on the morphology of aluminium coatings deposited by thermal spraying. Surf. Coat. Technol. 200(9), 3049–3055 (2006)

    Article  Google Scholar 

  29. Yarahmadi, R., Mortazavi, S.B., Moridi, P.: Development of air treatment technology using plasma method. Int J Occup Hygiene. 4(1), 27–35 (2015)

    Google Scholar 

  30. Yarahmadi, R., Mortazavi, S.B., Omidkhah, M.R., Asilyan, H., Moridi, P.: Examination of the optimized conditions for the conversion of NOx pollution in DBD plasma reactor. Iran. J. Chem. Chem. Eng. 29(1), 133–140 (2010)

    Google Scholar 

  31. Leray, A., Guy, A., Makarov, M., Lombaert, K., Cormier, J.M., Khacef, A.: Plasma-assisted diesel oxidation catalyst on bench scale: focus on light-off temperature and NOx behavior. Top. Catal. 56(1–8), 222–226 (2013)

    Article  Google Scholar 

  32. Sivachandiran, L., Karuppiah, J., Subrahmanyam, C.: DBD plasma reactor for oxidative decomposition of chlorobenzene. Int. J. Chem. React. Eng. 10(1), (2012). https://doi.org/10.1515/1542-6580.2785

  33. Kang, K., Park, K., Yi, S., Kim, H.G., Choi, W., Traversa, E.: Preparation of ceramic composite membranes by microwave heating. J. Korean Phys. Soc. 45(1), 138–140 (2004)

    Google Scholar 

  34. Liu, N., Gao, Y.X., Wang, W.D., Huang, W.X.: Cu-co composite oxides supported on multi-walled carbon nanotubes for catalytic removal of CO in a H2-rich stream. Chin. J. Chem. Phys. 27(5), 523–529 (2014). https://doi.org/10.1063/1674-0068/27/05/523-529

    Article  Google Scholar 

  35. Wongkaew, A., Kongsi, W., Limsuwan, P.: Physical properties and selective CO oxidation of coprecipitated CuO/CeO2 catalysts depending on the CuO in the samples. Adv. Mater. Sci. Eng. 2013, 1–8 (2013). https://doi.org/10.1155/2013/374080

    Article  Google Scholar 

  36. Aunbamrung, P., Wongkaew, A.: Effect of cu loading to catalytic selective CO oxidation of CuO/CeO2–Co3O4. Adv Chem Eng Sci. 3(04), 15 (2013). https://doi.org/10.4236/aces.2013.34B003

    Article  Google Scholar 

  37. Maciel, C.G., de Freitas Silva, T., Hirooka, M.I., Belgacem, M.N., Assaf, J.M.: Effect of nature of ceria support in CuO/CeO2 catalyst for PROX-CO reaction. Fuel. 97, 245–252 (2012). https://doi.org/10.1016/j.fuel.2012.02.004

    Article  Google Scholar 

  38. Liu, Y., Fu, Q., Stephanopoulos, M.: Preferential oxidation of CO in H2 over CuO-CeO2 catalysts. Catal. Today. 93, 241–246 (2004). https://doi.org/10.1016/j.cattod.2004.06.049

    Article  Google Scholar 

  39. Ahmed, S., Aitani, A., Rahman, F., Al-Dawood, A., Al-Muhaish, F.: Decomposition of hydrocarbons to hydrogen and carbon. Appl. Catal. A Gen. 359(1), 1–24 (2009). https://doi.org/10.1016/j.apcata.2009.02.038

    Article  Google Scholar 

  40. Kim, H.H., Teramoto, Y., Negishi, N., Ogata, A.: A multidisciplinary approach to understand the interactions of nonthermal plasma and catalyst: a review. Catal. Today. 256(1), 13–22 (2015). https://doi.org/10.1016/j.cattod.2015.04.009

    Article  Google Scholar 

  41. synergistic effect. from BusinessDictionary.com website. http://www.businessdictionary.com/definition/synergistic-effect.html. Retrieved 25 November 2019

  42. Lucas, J.A.: Phytophthora: Symposium of the British Mycological Society, the British Society for Plant Pathology and the Society of Irish Plant Pathologists Held at Trinity College, Dublin September 1989, vol. 17. Cambridge University Press, (1991)

  43. Zou, J.J., Liu, C.J.: Utilization of carbon dioxide through nonthermal plasma approaches. handbook of Carbon Dioxide as Chemical Feedstock, chater 10, 1 edition, 267–290 (2010)

  44. Sultana, S., Vandenbroucke, A., Leys, C., De Geyter, N., Morent, R.: Abatement of VOCs with alternate adsorption and plasma-assisted regeneration: a review. Catalysts. 5(2), 718–746 (2015). https://doi.org/10.3390/catal5020718

    Article  Google Scholar 

  45. Wang, Z.: Reaction mechanism of N0x destruction by non-thermal plasma discharge. Ph.D thesis in Chemistry, department of Chemistry, B.A. Sichuan university, Atlanta, Georgia (1999)

  46. Soleimani-Alyar, S., Yarahmadi, R.: CO removal using single stage plasma-catalytic hybrid process in laboratory scale. J Environ Stud. 44(4), 22–24 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Somayeh Soleimani-Alyar.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publishers Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yarahmadi, R., Soleimani-Alyar, S. A Laboratory Study of Low-Temperature CO Removal from Mobile Exhaust Gas Using In-Plasma Catalysis. Emiss. Control Sci. Technol. 6, 17–27 (2020). https://doi.org/10.1007/s40825-020-00154-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40825-020-00154-2

Keywords

Navigation