Skip to main content

Advertisement

Log in

Non-Thermal Plasmas for VOCs Abatement

  • Review Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

Volatile organic compounds (VOCs) are some of the most common air pollutants emitted from commercial and industrial processes; VOCs may also reduce indoor air quality. Increased environmental awareness, however, has resulted in stringent regulations controlling VOCs emission and has motivated researchers to develop various kinds of treatment. Non-thermal plasma (NTP) processes are regarded as promising methods for VOCs abatement. This paper reviews the state of the art and achievements of NTP for VOCs abatement and includes a description of several reactor configurations based on different discharge principles. Of particular interest are NTP-catalytic systems, characterized by higher energy efficiencies and lower byproduct production than the NTP-alone systems. Physical–chemical effects of NTP-catalytic systems occurring during plasma catalytic processes are discussed. The NTP decomposition mechanisms for toluene, naphthalene and trichloroethylene are discussed in detail. Influences of various processing parameters are summarized, and comments are given based on removal efficiencies and operational costs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Liotta LF (2010) Catalytic oxidation of volatile organic compounds on supported noble metals. Appl Catal B-Environ 100(3–4):403–412

    CAS  Google Scholar 

  2. Liu Y, Shao M, Fu LL, Lu SH, Zeng LM, Tang DG (2008) Source profiles of volatile organic compounds (VOCs) measured in China: Part I. Atmos Environ 42(25):6247–6260

    CAS  Google Scholar 

  3. Vandenbroucke AM, Morent R, De Geyter N, Leys C (2011) Non-thermal plasmas for non-catalytic and catalytic VOC abatement. J Hazard Mater 195:30–54

    CAS  Google Scholar 

  4. Lerner JEC, Sanchez EY, Sambeth JE, Porta AA (2012) Characterization and health risk assessment of VOCs in occupational environments in Buenos Aires, Argentina. Atmos Environ 55:440–447

    Google Scholar 

  5. Wei W, Wang SX, Hao JM (2011) Uncertainty analysis of emission inventory for volatile organic compounds from anthropogenic sources in China. Environ Sci 32(2):305–312

    Google Scholar 

  6. Odum JR, Jungkamp TPW, Griffin RJ, Forstner HJL, Flagan RC, Seinfeld JH (1997) Aromatics, reformulated gasoline, and atmospheric organic aerosol formation. Environ Sci Technol 31(7):1890–1897

    CAS  Google Scholar 

  7. Li WB, Gong H (2010) Recent progress in the removal of volatile organic compounds by catalytic combustion. Acta Phys-Chim Sin 26(4):885–894

    CAS  Google Scholar 

  8. Hsu LJ, Lin CC (2011) Removal of methanol and 1-butanol from binary mixtures by absorption in rotating packed beds with blade packings. Chem Eng J 168(1):190–200

    CAS  Google Scholar 

  9. Kim KJ, Ahn HG (2012) The effect of pore structure of zeolite on the adsorption of VOCs and their desorption properties by microwave heating. Micropor Mesopor Mat 152:78–83

    CAS  Google Scholar 

  10. Gupta VK, Verma N (2002) Removal of volatile organic compounds by cryogenic condensation followed by adsorption. Chem Eng Sci 57(14):2679–2696

    CAS  Google Scholar 

  11. Zehraoui A, Hassan AA, Sorial GA (2012) Effect of methanol on the biofiltration of n-hexane. J Hazard Mater 219:176–182

    Google Scholar 

  12. Tan SJ, Li L, Xiao ZY, Wu YT, Zhang ZB (2005) Pervaporation of alcoholic beverages: the coupling effects between ethanol and aroma compounds. J Membrane Sci 264(1–2):129–136

    CAS  Google Scholar 

  13. Hussain M, Russo N, Saracco G (2011) Photocatalytic abatement of VOCs by novel optimized TiO2 nanoparticles. Chem Eng J 166(1):138–149

    CAS  Google Scholar 

  14. Nunez CM, Ramsey GH, Ponder WH, Abbott JH, Hamel LE, Kariher PH (1993) Corona destruction: an innovative control technology for vocs and air toxics. J Air Waste Manage 43(2):242–247

    CAS  Google Scholar 

  15. Magureanu M, Mandache NB, Gaigneaux E, Paun C, Parvulescu VI (2006) Toluene oxidation in a plasma-catalytic system. J Appl Phys 99(12):123301

    Google Scholar 

  16. Karuppiah J, Reddy EL, Reddy PMK, Ramaraju B, Karvembu R, Subrahmanyam C (2012) Abatement of mixture of volatile organic compounds (VOCs) in a catalytic non-thermal plasma reactor. J Hazard Mater 237:283–289

    Google Scholar 

  17. Van Durme J, Dewulf J, Leys C, Van Langenhove H (2008) Combining non-thermal plasma with heterogeneous catalysis in waste gas treatment: a review. Appl Catal B-Environ 78(3–4):324–333

    Google Scholar 

  18. Atkinson R, Arey J (2003) Gas-phase tropospheric chemistry of biogenic volatile organic compounds: a review. Atmos Environ 37:S197–S219

    CAS  Google Scholar 

  19. Kim HH, Ogata A, Futamura S (2005) Atmospheric plasma-driven catalysis for the low temperature decomposition of dilute aromatic compounds. J Phys D Appl Phys 38(8):1292–1300

    CAS  Google Scholar 

  20. Jarrige J, Vervisch P (2009) Plasma-enhanced catalysis of propane and isopropyl alcohol at ambient temperature on a MnO2-based catalyst. Appl Catal B-Environ 90(1–2):74–82

    CAS  Google Scholar 

  21. Thevenet F, Guaitella O, Puzenat E, Guillard C, Rousseau A (2008) Influence of water vapour on plasma/photocatalytic oxidation efficiency of acetylene. Appl Catal B-Environ 84(3–4):813–820

    CAS  Google Scholar 

  22. Fan X, Zhu TL, Wang MY, Li XM (2009) Removal of low-concentration BTX in air using a combined plasma catalysis system. Chemosphere 75(10):1301–1306

    CAS  Google Scholar 

  23. Delagrange S, Pinard L, Tatibouet JM (2006) Combination of a non-thermal plasma and a catalyst for toluene removal from air: manganese based oxide catalysts. Appl Catal B-Environ 68(3–4):92–98

    CAS  Google Scholar 

  24. Grossmannova H, Neirynck D, Leys C (2006) Atmospheric discharge combined with Cu-Mn/Al2O3 catalyst unit for the removal of toluene. Czech J Phys 56:B1156–B1161

    Google Scholar 

  25. Schmid S, Jecklin MC, Zenobi R (2010) Degradation of volatile organic compounds in a non-thermal plasma air purifier. Chemosphere 79(2):124–130

    CAS  Google Scholar 

  26. Ni MJ, Shen X, Gao XA, Wu ZL, Lu H, Li ZS, Luo ZY, Cen KF (2011) Naphthalene decomposition in a DC corona radical shower discharge. J Zhejiang Univ-Sc A 12(1):71–77

    CAS  Google Scholar 

  27. Xiang G, Xu S, Wu Z, Zhongyang L, Mingjiang N, Kefa C (2009) The mechanism of naphthalene decomposition in corona radical shower system by DC discharge. In: Electrostatic precipitation. Springer, pp 713–717

  28. Klett C, Touchard S, Vega-Gonzalez A, Redolfi M, Bonnin X, Hassouni K, Duten X (2012) Experimental and modeling study of the oxidation of acetaldehyde in an atmospheric-pressure pulsed corona discharge. Plasma Sources Sci T 21(4):045001

    Google Scholar 

  29. Subrahmanyam C, Renken A, Kiwi-Minsker L (2007) Novel catalytic non-thermal plasma reactor for the abatement of VOCs. Chem Eng J 134(1–3):78–83

    CAS  Google Scholar 

  30. Huang HB, Ye DQ, Guan XJ (2008) The simultaneous catalytic removal of VOCs and O(3) in a post-plasma. Catal Today 139(1–2):43–48

    CAS  Google Scholar 

  31. Malik MA, Minamitani Y, Schoenbach KH (2005) Comparison of catalytic activity of aluminum oxide and silica gel for decomposition of volatile organic compounds (VOCs) in a plasmacatalytic reactor. IEEE Trans Plasma Sci 33(1):50–56

    CAS  Google Scholar 

  32. Song YH, Kim SJ, Choi KI, Yamamoto T (2002) Effects of adsorption and temperature on a nonthermal plasma process for removing VOCs. J Electrostat 55(2):189–201

    CAS  Google Scholar 

  33. Ighigeanu D, Calinescu I, Martin D, Matei C (2008) A new hybrid technique for the volatile organic compounds removal by combined use of electron beams, microwaves and catalysts. Nucl Instrum Meth B 266(10):2524–2528

    CAS  Google Scholar 

  34. Kim HH (2004) Nonthermal Plasma Processing for Air-Pollution Control: a Historical Review, Current Issues, and Future Prospects. Plasma Process Polym 1(2):91–110

    Google Scholar 

  35. Kogelschatz U (2003) Dielectric-barrier discharges: their history, discharge physics, and industrial applications. Plasma Chem Plasma Process 23(1):1–46

    CAS  Google Scholar 

  36. Penetrante B, Hsiao M, Bardsley J, Merritt B, Vogtlin G, Wallman P, Kuthi A, Burkhart C, Bayless J (1995) Non-thermal plasma techniques for abatement of volatile organic compounds and nitrogen oxides. Lawrence Livermore National Lab, Livermore

    Google Scholar 

  37. Matthews S, Boegel A, Loftis J, Caufield R, Mincher B, Meikrantz D, Murphy R (1993) Decomposition of halogenated hydrocarbons using intense, penetrating bremsstrahlung. Radiat Phys Chem 42(4):689–693

    CAS  Google Scholar 

  38. Yi CH, Lee YH, Kim DW, Yeom GY (2003) Characteristic of a dielectric barrier discharges using capillary dielectric and its application to photoresist etching. Surf Coat Tech 163:723–727

    Google Scholar 

  39. Kogelschatz U, Eliasson B, Egli W (1997) Dielectric-barrier discharges. Principle and applications. J Phys IV 7(C4):47–66

  40. Chen HL, Lee HM, Chen SH, Chang MB (2008) Review of packed-bed plasma reactor for ozone generation and air pollution control. Ind Eng Chem Res 47(7):2122–2130

    CAS  Google Scholar 

  41. Chang CL, Lin TS (2005) Decomposition of toluene and acetone in packed dielectric barrier discharge reactors. Plasma Chem Plasma Process 25(3):227–243

    CAS  Google Scholar 

  42. Uhm HS, Hong YC, Shin DH (2006) A microwave plasma torch and its applications. Plasma Sources Sci Technol 15(2):S26

    Google Scholar 

  43. Jasiński M, Mizeraczyk J, Dors M (2008) Microwave discharge generator operated at high gas flow rate. Przegląd Elektrotechniczny 84:77–79

    Google Scholar 

  44. Fridman A, Nester S, Kennedy LA, Saveliev A, Mutaf-Yardimci O (1998) Gliding arc gas discharge. Prog Energy Combust Sci 25(2):211–231

    Google Scholar 

  45. Czemichowski A (1994) Gliding arc. Applications to engineering and environment control. Pure Appl Chem 66(6):1301–1310

    Google Scholar 

  46. Chang J-S (2001) Recent development of plasma pollution control technology: a critical review. Sci Technol Adv Mater 2(3):571–576

    CAS  Google Scholar 

  47. Urashima K, Chang JS (2000) Removal of volatile organic compounds from air streams and industrial flue gases by non-thermal plasma technology. IEEE Trans Dielect Electr Insul 7(5):602–614

    CAS  Google Scholar 

  48. Sankin GN, Teslenko VS (1996) Study of an electrical discharge in air with a capillary electrolytic electrode. Tech Phys Lett 22:1020–1022

    Google Scholar 

  49. Preis S, Klauson D, Gregor A (2013) Potential of electric discharge plasma methods in abatement of volatile organic compounds originating from the food industry. J Environ Manag 114:125–138

    CAS  Google Scholar 

  50. Vitale SA, Hadidi K, Cohn DR, Bromberg L, Falkos P (1996) Decomposing VOCs with an electron-beam plasma reactor. ChemTech 26(4):58–63

    CAS  Google Scholar 

  51. Hakoda T, Hashimoto S, Fujiyama Y, Mizuno A (2000) Decomposition mechanism for electron beam irradiation of vaporized trichloroethylene-air mixtures. J Phys Chem A 104(1):59–66

    CAS  Google Scholar 

  52. Penetrante BM, Hsiao MC, Bardsley JN, Merritt BT, Vogtlin GE, Wallman PH, Kuthi A, Burkhart CP, Bayless JR (1996) Electron beam and pulsed corona processing of volatile organic compounds in gas streams. Pure Appl Chem 68(5):1083–1087

    CAS  Google Scholar 

  53. Hirota K, Sakai H, Washio M, Kojima T (2004) Application of electron beams for the treatment of VOC streams. Ind Eng Chem Res 43(5):1185–1191

    CAS  Google Scholar 

  54. Nehra V, Kumar A, Dwivedi H (2008) Atmospheric non-thermal plasma sources. Int J Eng 2(1):53

    Google Scholar 

  55. Urashima K, Chang JS, Ito T (1997) Reduction of NOx from combustion flue gases by superimposed barrier discharge plasma reactors. IEEE Trans Ind Appl 33(4):879–886

    CAS  Google Scholar 

  56. Chang JS, Chakrabarti A, Urashima K, Arai M (1998) The effects of barium titanate pellet shapes on the gas discharge characteristics of ferroelectric packed bed reactors. Annual report conference on electrical insulation and dielectric phenomena, Vols 1 and 2:485–488

  57. Liang WJ, Li J, Li J, Jin YQ (2009) Abatement of toluene from gas streams via ferro-electric packed bed dielectric barrier discharge plasma. J Hazard Mater 170(2–3):633–638

    CAS  Google Scholar 

  58. Ogata A, Shintani N, Mizuno K, Kushiyama S, Yamamoto T (1999) Decomposition of benzene using a nonthermal plasma reactor packed with ferroelectric pellets. IEEE Trans Ind Appl 35(4):753–759

    CAS  Google Scholar 

  59. Fan Hy (1939) The transition from glow discharge to arc. Phys Rev 55:769–775

    Google Scholar 

  60. Schiorlin M, Marotta E, Rea M, Paradisi C (2009) Comparison of toluene removal in air at atmospheric conditions by different corona discharges. Environ Sci Technol 43(24):9386–9392

    CAS  Google Scholar 

  61. Chang JS, Lawless PA, Yamamoto T (1991) Corona discharge processes. IEEE Trans Plasma Sci 19(6):1152–1166

    CAS  Google Scholar 

  62. Gallo C (1977) Corona-a brief status report. IEEE Trans Ind Appl 6:550–557

    Google Scholar 

  63. Hirsch M, Goldman M (1977) Continuous current in the positive point corona in air: Townsend was right. In: Proceedings of 13th international conference on phenomena in ionized gases (Berlin, GDR, 1977)

  64. Nasser E (1971) Fundamentals of gaseous ionization and plasma electronics, vols. 1, 197. Wiley-Interscience, New York

  65. Xiao G, Wang X, Zhang J, Ni M, Gao X, Cen K (2014) Characteristics of DC discharge in a wire-cylinder configuration at high ambient temperatures. J Electrostat 72(1):13–21

    CAS  Google Scholar 

  66. Xiao G, Wang X, Zhang J, Ni M, Gao X, Cen K (2014) Current analysis of DC negative corona discharge in a wire-cylinder configuration at high ambient temperatures. J Electrostat 72(2):107–119

  67. Li DA, Yakushiji D, Kanazawa S, Ohkubo T, Nomoto Y (2002) Decomposition of toluene by streamer corona discharge with catalyst. J Electrostat 55(3–4):311–319

    CAS  Google Scholar 

  68. Teply J, Dressler M, Janca J, Tesar C (1995) Destruction of organic-compounds in a high-frequency discharge plasma at reduced pressure. Plasma Chem Plasma Process 15(3):465–479

    CAS  Google Scholar 

  69. Arno J, Bevan JW, Moisan M (1995) Acetone conversion in a low-pressure oxygen surface wave plasma. Environ Sci Technol 29(8):1961–1965

    CAS  Google Scholar 

  70. Mutaf-Yardimci O, Saveliev AV, Fridman AA, Kennedy LA (2000) Thermal and nonthermal regimes of gliding arc discharge in air flow. J Appl Phys 87(4):1632–1641

    CAS  Google Scholar 

  71. Ogata A, Ito D, Mizuno K, Kushiyama S, Yamamoto T (2001) Removal of dilute benzene using a zeolite-hybrid plasma reactor. IEEE Trans Ind Appl 37(4):959–964

    CAS  Google Scholar 

  72. Ban JY, Son YH, Kang M, Choung SJ (2006) Highly concentrated toluene decomposition on the dielectric barrier discharge (DBD) plasma-photocatalytic hybrid system with Mn-Ti-incorporated mesoporous silicate photocatalyst (Mn-Ti-MPS). Appl Surf Sci 253(2):535–542

    CAS  Google Scholar 

  73. Bo Z, Yan J, Li X, Chi Y, Cen K, Cheron B (2007) Effects of oxygen and water vapor on volatile organic compounds decomposition using gliding arc gas discharge. Plasma Chem Plasma Process 27(5):546–558

    CAS  Google Scholar 

  74. Yu L, Li XD, Tu X, Wang Y, Lu SY, Yan JH (2010) Decomposition of naphthalene by dc gliding arc gas discharge. J Phys Chem A 114(1):360–368

    CAS  Google Scholar 

  75. Kohno H, Berezin AA, Chang JS, Tamura M, Yamamoto T, Shibuya A, Hondo S (1998) Destruction of volatile organic compounds used in a semiconductor industry by a capillary tube discharge reactor. IEEE Trans Ind Appl 34(5):953–966

    CAS  Google Scholar 

  76. Huang HB, Ye DQ, Leung DYC, Feng FD, Guan XJ (2011) Byproducts and pathways of toluene destruction via plasma-catalysis. J Mol Catal A-Chem 336(1–2):87–93

    CAS  Google Scholar 

  77. Lee HM, Chang MB (2003) Abatement of gas-phase p-xylene via dielectric barrier discharges. Plasma Chem Plasma Process 23(3):541–558

    CAS  Google Scholar 

  78. Kim HH, Ogata A, Futamura S (2006) Effect of different catalysts on the decomposition of VOCS using flow-type plasma-driven catalysis. IEEE Trans Plasma Sci 34(3):984–995

    CAS  Google Scholar 

  79. Magureanu M, Mandache NB, Eloy P, Gaigneaux EM, Parvulescu VI (2005) Plasma-assisted catalysis for volatile organic compounds abatement. Appl Catal B-Environ 61(1–2):12–20

    CAS  Google Scholar 

  80. Kim HH, Kobara H, Ogata A, Futamura S (2005) Comparative assessment of different nonthermal plasma reactors on energy efficiency and aerosol formation from the decomposition of gas-phase benzene. IEEE Trans Ind Appl 41(1):206–214

    CAS  Google Scholar 

  81. Zhang XM, Feng FD, Li SR, Tang XJ, Huang YF, Liu Z, Yan KP (2013) Aerosol formation from styrene removal with an AC/DC streamer corona plasma system in air. Chem Eng J 232:527–533

    CAS  Google Scholar 

  82. Luo HL, Sheng J, Wan YZ (2007) Plasma polymerization of styrene with carbon dioxide under glow discharge conditions. Appl Surf Sci 253(12):5203–5207

    CAS  Google Scholar 

  83. Borra J-P (2006) Nucleation and aerosol processing in atmospheric pressure electrical discharges: powders production, coatings and filtration. J Phys D Appl Phys 39(2):R19

    CAS  Google Scholar 

  84. Mayya YS, Sapra BK, Khan A, Sunny F (2004) Aerosol removal by unipolar ionization in indoor environments. J Aerosol Sci 35(8):923–941

    CAS  Google Scholar 

  85. Hautanen J, Kilpelainen M, Kauppinen EI, Jokiniemi J, Lehtinen K (1995) Electrical agglomeration of aerosol-particles in an alternating electric-field. Aerosol Sci Tech 22(2):181–189

    CAS  Google Scholar 

  86. Dramane B, Zouzou N, Moreau E, Touchard G (2009) Electrostatic precipitation of submicron particles using a DBD in axisymmetric and planar configurations. IEEE Trans Dielectr Electr Insul 16(2):343–351

    CAS  Google Scholar 

  87. Onwudili JA, Williams PT (2007) Reaction mechanisms for the decomposition of phenanthrene and naphthalene under hydrothermal conditions. J Supercrit Fluid 39(3):399–408

    CAS  Google Scholar 

  88. Vialaton D, Richard C, Baglio D, Paya-Perez AB (1999) Mechanism of the photochemical transformation of naphthalene in water. J Photoch Photobio A 123(1–3):15–19

    CAS  Google Scholar 

  89. Lair A, Ferronato C, Chovelon JM, Herrrnann JM (2008) Naphthalene degradation in water by heterogeneous photocatalysis: an investigation of the influence of inorganic anions. J Photoch Photobio A 193(2–3):193–203

    CAS  Google Scholar 

  90. David W (1996) Kinetics of reactions between neutral free radicals. Rate constants for the reaction of CH radicals with N atoms between 216 and 584 K. J Chem Soc, Faraday Trans 92(5):723–727

    Google Scholar 

  91. Abdelaziz AA, Seto T, Abdel-Salam M, Otani Y (2012) Performance of a surface dielectric barrier discharge based reactor for destruction of naphthalene in an air stream. J Phys D Appl Phys 45(11):115201

    Google Scholar 

  92. Nakagawa Y, Fujisawa H, Ono R, Oda T (2010) Dilute trichloroethylene decomposition by using high pressure non-thermal plasma: humidity effects. In: Industry applications society annual meeting (IAS), 2010 IEEE. pp 1–4

  93. Evans D, Rosocha LA, Anderson GK, Coogan JJ, Kushner MJ (1993) Plasma remediation of trichloroethylene in silent discharge plasmas. J Appl Phys 74(9):5378–5386

    CAS  Google Scholar 

  94. Hammer T, Kappes T, Baldauf M (2004) Plasma catalytic hybrid processes: gas discharge initiation and plasma activation of catalytic processes. Catal Today 89(1–2):5–14

    CAS  Google Scholar 

  95. Grigaitiene V, Striugas N, Snapkauskiene V, Zakarauskas K (2012) Improving syngas production from glycerol using plasma sprayed catalytic coatings. Catal Today 196(1):75–80

    CAS  Google Scholar 

  96. Harling AM, Demidyuk V, Fischer SJ, Whitehead JC (2008) Plasma-catalysis destruction of aromatics for environmental clean-up: effect of temperature and configuration. Appl Catal B-Environ 82(3–4):180–189

    CAS  Google Scholar 

  97. Kraus M, Eliasson B, Kogelschatz U, Wokaun A (2001) CO2 reforming of methane by the combination of dielectric-barrier discharges and catalysis. Phys Chem Chem Phys 3(3):294–300

    CAS  Google Scholar 

  98. Holzer F, Kopinke FD, Roland U (2005) Influence of ferroelectric materials and catalysts on the performance of non-thermal plasma (NTP) for the removal of air pollutants. Plasma Chem Plasma Process 25(6):595–611

    CAS  Google Scholar 

  99. Guo YF, Ye DQ, Chen KF, He JC, Chen WL (2006) Toluene decomposition using a wire-plate dielectric barrier discharge reactor with manganese oxide catalyst in situ. J Mol Catal A-Chem 245(1–2):93–100

    CAS  Google Scholar 

  100. Hayashi K, Yasui H, Tanaka M, Futamura S, Kurita S, Aoyagi K (2009) Temperature dependence of toluene decomposition behavior in the discharge-catalyst hybrid reactor. IEEE Trans Ind Appl 45(5):1553–1558

    CAS  Google Scholar 

  101. Roland U, Holzer F, Kopinke ED (2005) Combination of non-thermal plasma and heterogeneous catalysis for oxidation of volatile organic compounds Part 2. Ozone decomposition and deactivation of gamma-Al2O3. Appl Catal B-Environ 58(3–4):217–226

    CAS  Google Scholar 

  102. Guo YF, Ye DQ, Chen KF, Tian YF (2006) Humidity effect on toluene decomposition in a wire-plate dielectric barrier discharge reactor. Plasma Chem Plasma Process 26(3):237–249

    CAS  Google Scholar 

  103. Chang MB, Lee HM (2004) Abatement of perfluorocarbons with combined plasma catalysis in atmospheric-pressure environment. Catal Today 89(1–2):109–115

    CAS  Google Scholar 

  104. Sano T, Negishi N, Sakai E, Matsuzawa S (2006) Contributions of photocatalytic/catalytic activities of TiO2 and γ-Al2O3 in nonthermal plasma on oxidation of acetaldehyde and CO. J Mol Catal A-Chem 245(1–2):235–241

    CAS  Google Scholar 

  105. Kim HH, Ogata A, Futamura S (2008) Oxygen partial pressure-dependent behavior of various catalysts for the total oxidation of VOCs using cycled system of adsorption and oxygen plasma. Appl Catal B-Environ 79(4):356–367

    CAS  Google Scholar 

  106. Blackbeard T, Demidyuk V, Hill SL, Whitehead JC (2009) The effect of temperature on the plasma-catalytic destruction of propane and propene: a comparison with thermal catalysis. Plasma Chem Plasma Process 29(6):411–419

    CAS  Google Scholar 

  107. Chavadej S, Kiatubolpaiboon W, Rangsunvigit P, Sreethawong T (2007) A combined multistage corona discharge and catalytic system for gaseous benzene removal. J Mol Catal A-Chem 263(1–2):128–136

    CAS  Google Scholar 

  108. Blazkova A, Csolleova I, Brezova V (1998) Effect of light sources on the phenol degradation using Pt/TiO2 photocatalysis immobilized on glass fibres. J Photoch Photobio A 113(3):251–256

    CAS  Google Scholar 

  109. Chae JO, Demidiouk V, Yeulash M, Choi IC, Jung TG (2004) Experimental study for indoor air control by plasma-catalyst hybrid system. IEEE Trans Plasma Sci 32(2):493–497

    CAS  Google Scholar 

  110. Zhang H, Chu W, Xu HY, Zhou J (2010) Plasma-assisted preparation of Fe-Cu bimetal catalyst for higher alcohols synthesis from carbon monoxide hydrogenation. Fuel 89(10):3127–3131

    CAS  Google Scholar 

  111. Hinokuma S, Okamoto M, Ando E, Ikeue K, Machida M (2011) Structure and catalytic property of supported rhodium catalysts prepared using arc-plasma. Catal Today 175(1):593–597

    CAS  Google Scholar 

  112. Liu CJ, Zou JJ, Yu KL, Cheng DG, Han Y, Zhan J, Ratanatawanate C, Jang BWL (2006) Plasma application for more environmentally friendly catalyst preparation. Pure Appl Chem 78(6):1227–1238

    CAS  Google Scholar 

  113. Wallis AE, Whitehead JC, Zhang K (2007) Plasma-assisted catalysis for the destruction of CFC-12 in atmospheric pressure gas streams using TiO2. Catal Lett 113(1–2):29–33

    CAS  Google Scholar 

  114. Guo YF, Ye DQ, Chen KF, He JC (2007) Toluene removal by a DBD-type plasma combined with metal oxides catalysts supported by nickel foam. Catal Today 126(3–4):328–337

    CAS  Google Scholar 

  115. Wallis AE, Whitehead JC, Zhang K (2007) The removal of dichloromethane from atmospheric pressure nitrogen gas streams using plasma-assisted catalysis. Appl Catal B-Environ 74(1–2):111–116

    CAS  Google Scholar 

  116. Blin-Simiand N, Pasquiers S, Jorand F, Postel C, Vacher JR (2009) Removal of formaldehyde in nitrogen and in dry air by a DBD: importance of temperature and role of nitrogen metastable states. J Phys D Appl Phys 42(12):122003

    Google Scholar 

  117. Staack D, Farouk B, Gutsol AF, Fridman AA (2006) Spectroscopic studies and rotational and vibrational temperature measurements of atmospheric pressure normal glow plasma discharges in air. Plasma Sources Sci Tech 15(4):818–827

    CAS  Google Scholar 

  118. Liang W-J, Ma L, Liu H, Li J (2013) Toluene degradation by non-thermal plasma combined with a ferroelectric catalyst. Chemosphere 92(10):1390–1395

  119. Subrahmanyam C, Renken A, Kiwi-Minsker L (2010) Catalytic non-thermal plasma reactor for abatement of toluene. Chem Eng J 160(2):677–682

    CAS  Google Scholar 

  120. Guo YF, Liao XB, He JH, Ou WJ, Ye DQ (2010) Effect of manganese oxide catalyst on the dielectric barrier discharge decomposition of toluene. Catal Today 153(3–4):176–183

    CAS  Google Scholar 

  121. An HTQ, Huu TP, Le Van T, Cormier JM, Khacef A (2011) Application of atmospheric non thermal plasma-catalysis hybrid system for air pollution control: toluene removal. Catal Today 176(1):474–477

    Google Scholar 

  122. Vandenbroucke A, Mora M, Jiménez-Sanchidrián C, Romero-Salguero F, De Geyter N, Leys C, Morent R (2014) TCE abatement with a plasma-catalytic combined system using MnO2 as catalyst. Appl Catal B 156:94–100

    Google Scholar 

  123. Wu F, M-j NI, X-d LI (2008) Plasma catalysis on the decomposition of hexane with gliding arc discharge. Energy Eng 3:019

    Google Scholar 

  124. Yan J, Bo Z, Li X, Du CM, Cen K, Cheron B (2007) Study of mechanism for hexane decomposition with gliding arc gas discharge. Plasma Chem Plasma Process 27(2):115–126

    Google Scholar 

  125. Młotek M, Sentek J, Krawczyk K, Schmidt-Szałowski K (2009) The hybrid plasma–catalytic process for non-oxidative methane coupling to ethylene and ethane. Appl Catal A-Gen 366(2):232–241

    Google Scholar 

  126. Du CM, Yan JH, Cheron B (2007) Decomposition of toluene in a gliding arc discharge plasma reactor. Plasma Sources Sci Tech 16(4):791–797

    CAS  Google Scholar 

  127. Schmidt-Szałowski K, Krawczyk K, Sentek J, Ulejczyk B, Górska A, Młotek M (2011) Hybrid plasma-catalytic systems for converting substances of high stability, greenhouse gases and VOC. Chem Eng Res Des 89(12):2643–2651

    Google Scholar 

  128. Bo Z, Yan J, Li X, Chi Y, Cen K (2008) Scale-up analysis and development of gliding arc discharge facility for volatile organic compounds decomposition. J Hazard Mater 155(3):494–501

    CAS  Google Scholar 

  129. Jarrige J, Vervisch P (2006) Decomposition of three volatile organic compounds by nanosecond pulsed corona discharge: study of by-product formation and influence of high voltage pulse parameters. J Appl Phys 99(11):113303

    Google Scholar 

  130. Demidiouk V, Chae JO (2005) Decomposition of volatile organic compounds in plasma-catalytic system. IEEE Trans Plasma Sci 33(1):157–161

    CAS  Google Scholar 

  131. Byeon JH, Park JH, Jo YS, Yoon KY, Hwang J (2010) Removal of gaseous toluene and submicron aerosol particles using a dielectric barrier discharge reactor. J Hazard Mater 175(1–3):417–422

    CAS  Google Scholar 

  132. Mok YS, Demidyuk V, Whitehead JC (2008) Decomposition of hydrofluorocarbons in a dielectric-packed plasma reactor. J Phys Chem A 112(29):6586–6591

    CAS  Google Scholar 

  133. Oh JH, Mok YS, Lee SB, Chang MS (2009) Destruction of HCFC-22 and distribution of byproducts in a nonthermal plasma reactor packed with dielectric pellets. J Korean Phys Soc 54(4):1539–1546

    CAS  Google Scholar 

  134. Van Durme J, Dewulf J, Sysmans W, Leys C, Van Langenhove H (2007) Abatement and degradation pathways of toluene in indoor air by positive corona discharge. Chemosphere 68(10):1821–1829

    Google Scholar 

  135. Huang HB, Ye DQ (2009) Combination of photocatalysis downstream the non-thermal plasma reactor for oxidation of gas-phase toluene. J Hazard Mater 171(1–3):535–541

    CAS  Google Scholar 

  136. Sugasawa M, Terasawa T, Futamura S (2010) Additive effect of water on the decomposition of VOCs in nonthermal plasma. IEEE Trans Ind Appl 46(5):1692–1698

    CAS  Google Scholar 

  137. Trushkin A, Grushin M, Kochetov I, Trushkin N, Akishev YS (2013) Decomposition of toluene in a steady-state atmospheric-pressure glow discharge. Plasma Phys Rep 39(2):167–182

    CAS  Google Scholar 

  138. Krawczyk K, Ulejczyk B (2004) Influence of water vapor on CCl4 and CHCl3 conversion in gliding discharge. Plasma Chem Plasma Process 24(2):155–167

    CAS  Google Scholar 

  139. Aubry O, Cormier JM (2009) Improvement of the diluted propane efficiency treatment using a non-thermal plasma. Plasma Chem Plasma Process 29(1):13–25

    CAS  Google Scholar 

  140. Futamura S, Sugasawa M (2008) Additive effect on energy efficiency and byproduct distribution in VOC decomposition with nonthermal plasma. IEEE Trans Ind Appl 44(1):40–45

    CAS  Google Scholar 

  141. Lee HM, Chang MB (2001) Gas-phase removal of acetaldehyde via packed-bed dielectric barrier discharge reactor. Plasma Chem Plasma Process 21(3):329–343

    CAS  Google Scholar 

  142. Chiper AS, Blin-Simiand N, Heninger M, Mestdagh H, Boissel P, Jorand F, Lemaire J, Leprovost J, Pasquiers S, Popa G, Postel C (2010) Detailed characterization of 2-heptanone conversion by dielectric barrier discharge in N2 and N2/O2 mixtures. J Phys Chem A 114(1):397–407

    CAS  Google Scholar 

  143. Demidyuk V, Whitehead JC (2007) Influence of temperature on gas-phase toluene decomposition in plasma-catalytic system. Plasma Chem Plasma Process 27(1):85–94

    CAS  Google Scholar 

  144. Harling AM, Kim HH, Futamura S, Whitehead JC (2007) Temperature dependence of plasma-catalysis using a nonthermal, atmospheric pressure packed bed; the destruction of benzene and toluene. J Phys Chem C 111(13):5090–5095

    CAS  Google Scholar 

  145. Atkinson R, Carter WP (1984) Kinetics and mechanisms of the gas-phase reactions of ozone with organic compounds under atmospheric conditions. Chem Rev 84(5):437–470

    CAS  Google Scholar 

  146. Li J, Bai SP, Shi XC, Han SL, Zhu XM, Chen WC, Pu YK (2008) Effects of temperature on benzene oxidation in dielectric barrier discharges. Plasma Chem Plasma Process 28(1):39–48

    Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the support from the Nation Natural Science Foundation of China (No. 5126167), the National Science Foundation for Distinguished Young Scholars of China (No. 51125025), and the Zhejiang Provincial Natural Science Foundation of China (No. LY12E06005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingjiang Ni.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, G., Xu, W., Wu, R. et al. Non-Thermal Plasmas for VOCs Abatement. Plasma Chem Plasma Process 34, 1033–1065 (2014). https://doi.org/10.1007/s11090-014-9562-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-014-9562-0

Keywords

Navigation