Skip to main content
Log in

Parametric Study of Plasma Characteristics and Carbon Nanofibers Growth in PECVD System: Numerical Modeling

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

The aim of the present work is to develop a numerical model to understand and optimize the process parameters for the growth of carbon nanofibers (CNFs) inside the plasma enhanced chemical vapor deposition system containing acetylene, hydrogen, and argon gases. Two-dimensional axis-symmetrical inductive couple plasma module is implemented using COMSOL Multiphysics 5.2 simulation software to analyze the density profiles and temperatures of electrons, ions, and neutral species in the plasma at different gas pressures and input plasma powers. The outcomes of the COMSOL computational model show that the electron density in the plasma decreases with increase in gas pressure and increases with increase in plasma power. Other than the computational model, an analytical model is developed in the present paper that accounts the plasma sheath equations to study the fluxes and energies of the plasma species. The results obtained from the plasma sheath model at the catalyst-substrate surface boundary are fed as the input parameters to surface deposition model to investigate the growth characteristics of carbon nanofibers, i.e., poisoning of the catalyst nanoparticle, height, and diameter of carbon nanofiber at different gas pressures and input plasma powers. It is found that electron density decays at the faster rate when gas pressure is increased and decays at slower rate when input plasma power is raised. Moreover, it is also found that growth rate of CNFs increases with increase in gas pressure and plasma power. However, the significant drop in CNF growth rate is observed when the gas pressure is high enough (above and around 50 Torr). From the results obtained, it can be concluded that the CNFs having good growth characteristics can be obtained at some optimum pressure range, i.e., one order of the magnitude in the units of Torr. A good comparison between numerical simulation results and analytical results with each other and with existing experimental results confirms the adequacy of the computational and analytical approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Choi WB, Jin YW, Kim HY, Lee SJ, Yun MJ, Kang JK, Coi YS, Park NS, Lee NS, Kim JM (2001) Appl Phys Lett 78:1547–1549

    Article  CAS  Google Scholar 

  2. Niu C, Sichel EK, Hoch R, Moy D, Tennent H (1997) Appl Phys Lett 70:1480–1482

    Article  CAS  Google Scholar 

  3. Saito R, Dresselhaus G, Dresslhaus MS (1998) Physical properties of carbon nanotubes. Imperial College Press, London

    Book  Google Scholar 

  4. Darkrim FL, Malbrunot P, Tartaglia GP (2002) Int J Hydrog Energy 27:193–202

    Article  CAS  Google Scholar 

  5. Guillorn MA, Melechko AV, Merkulov VI, Ellis ED, Simpson ML (2001) J Vac Sci Technol B 19:2598–2601

    Article  CAS  Google Scholar 

  6. Merkulov VI, Melechko AV, Guillorn MA, Simpson ML, Lowndes DH, Whealton JH, Raridon RJ (2002) Appl Phys Lett 80:4816–4818

    Article  CAS  Google Scholar 

  7. Wei HW, Leou LC, Wei MT, Lin YY, Tsai CH (2005) J Appl Phys 98:044313

    Article  CAS  Google Scholar 

  8. Mehdipour H, Ostrikov K, Rider AE (2010) Nanotechnology 21:455605

    Article  CAS  PubMed  Google Scholar 

  9. Denysenko I, Azarenkov NA (2011) J Phys D Appl Phys 44:174031

    Article  CAS  Google Scholar 

  10. Denysenko I, Ostrikov K (2009) J Phys D Appl Phys 42:015208

    Article  CAS  Google Scholar 

  11. Denysenko I, Ostrikov K, Yu MY, Azarenkov NA (2007) J Appl Phys 102:074308

    Article  CAS  Google Scholar 

  12. Chhowalla M, Teo KBK, Ducati C, Rupessinghe NL, Amaratunga GAJ, Ferrari AC, Roy D, Robertson J, Milne WI (2001) J Appl Phys 90:5308–5317

    Article  CAS  Google Scholar 

  13. Catherine Y, Couderc P (1986) Thin Solid Films 144:265–280

    Article  CAS  Google Scholar 

  14. Ganjipour B, Mohrajerzadeh S, Hesamzadeh H, Khodadadi A (2005) Fuller Nanotubes Carbon Nanostrcut 13:365–373

    Article  CAS  Google Scholar 

  15. Delzeit L, McAninch I, Cruden BA, Hash D, Chen B, Han J, Meyyappan M (2002) J Appl Phys 91:6027–6033

    Article  CAS  Google Scholar 

  16. Wang BB, Lee S, Xu XZ, Choi S, Yan H, Zhang B, Hao W (2004) Appl Surf Sci 236:6–12

    Article  CAS  Google Scholar 

  17. Shivkumar G, Tholeti SS, Alrefae MA, Fisher TS, Alexeenko AA (2016) J Appl Phys 119:113301

    Article  CAS  Google Scholar 

  18. Cruden BA, Cassell AM, Hash DB, Meyyappan M (2004) J Appl Phys 96:5284–5292

    Article  CAS  Google Scholar 

  19. Mao M, Bogaerts A (2010) J Phys D Appl Phys 43:205201

    Article  CAS  Google Scholar 

  20. Harilal SS, Bindhu CV, Issac RC, Nampoori VPN, Vallabhan CPG (1997) J Appl Phys 82:2140–2146

    Article  CAS  Google Scholar 

  21. Collison WZ, Ni TQ, Barnes MS (1998) J Vac Sci Technol A 16:100–107

    Article  CAS  Google Scholar 

  22. Melechko AV, Merkulov VI, McKnight TE, Guillorn MA, Klein KL, Lowndes DH, Simpson ML (2005) J Appl Phys 97:041301

    Article  CAS  Google Scholar 

  23. Li WZ, Wen JG, Tu Y, Ren ZF (2001) Appl Phys A 73:259–264

    Article  CAS  Google Scholar 

  24. Pint CL, Nicholas N, Pheasant ST, Duque JG, Vasquez ANGP, Eres G, Pasquali M, Hauge RH (2008) J Phys Chem C 112:14041–14051

    Article  CAS  Google Scholar 

  25. Tsakadze ZL, Ostrikov K, Sow CH, Mhaisalkar SG, Boey YC (2010) J Nanosci Nanotechnol 10:6575–6579

    Article  CAS  PubMed  Google Scholar 

  26. Tanemura M, Iwata K, Takahashi K, Fujimoto Y, Okuyama Y, Sugie H, Filip V (2001) J Appl Phys 90:1529–1533

    Article  CAS  Google Scholar 

  27. Hinkov I, Farhat S, Scott CD (2005) Carbon 43:2453–2462

    Article  CAS  Google Scholar 

  28. Chang SC, Lin TC, Pai CY (2007) Microelectron J 38:657–662

    Article  CAS  Google Scholar 

  29. Merkulov VI, Hensely DK, Melechko AV, Guillorn MA, Lowndes DH, Simpson ML (2002) J Phys Chem B 106:10570–10577

    Article  CAS  Google Scholar 

  30. Gupta R, Sharma SC, Sharma R (2017) Plasma Sources Sci Technol 26:024006

    Article  CAS  Google Scholar 

  31. Gupta R, Gupta N, Sharma SC (2018) Phys Plasmas 25:043504

    Article  CAS  Google Scholar 

  32. Gupta R, Sharma SC (2018) Contrib Plasma Phys. https://doi.org/10.1002/ctpp.201700138

    Article  Google Scholar 

  33. Gupta R, Sharma SC (2017) Phys Plasma 24:073504

    Article  CAS  Google Scholar 

  34. Dagel DJ, Mallouris CM, Doyle JR (1996) J Appl Phys 79:8735–8747

    Article  CAS  Google Scholar 

  35. Denysenko IB, Xu S, Long JD, Rutkevych PP, Azarenkov NA, Ostrikov K (2004) J Appl Phys 95:2713–2724

    Article  CAS  Google Scholar 

  36. Deschenaux C, Affolter A, Magni D, Hollenstein C, Fayet P (1999) J Phys D Appl Phys 32:1876

    Article  CAS  Google Scholar 

  37. Benedikt J (2010) J Phys D Appl Phys 43:043001

    Article  CAS  Google Scholar 

  38. Doyle JR (1997) J Appl Phys 82:4763–4771

    Article  CAS  Google Scholar 

  39. Ostrikov K, Yoona HJ, Rider AE, Vladimirov SV (2007) Plasma Process Polym 4:27–40

    Article  CAS  Google Scholar 

  40. Mehdipour H, Ostrikov K, Rider AE, Han Z (2011) Plasma Process Polym 8:386–400

    Article  CAS  Google Scholar 

  41. Marvi Z, Xu S, Foroutan G, Ostrikov K (2015) Phys Plasmas 22:013504

    Article  CAS  Google Scholar 

  42. Cantoro M, Hofmann S, Pisana S, Ducati C, Parvez A, Ferrari AC, Robertson J (2006) Diam Relat Mater 15:1029–1035

    Article  CAS  Google Scholar 

  43. Hofmann S, Cantoro M, Kleinsorge B, Casiraghi C, Parvez A, Robertson J, Ducati C (2005) J Appl Phys 98:034308

    Article  CAS  Google Scholar 

  44. Louchev OA, Laude T, Sato Y, Kanda H (2003) J Chem Phys 118:7622–7634

    Article  CAS  Google Scholar 

  45. Yudasaka M, Kikuchi R, Matsui T, Ohki Y, Yoshimura S, Ota E (1995) Appl Phys Lett 67:2477–2479

    Article  CAS  Google Scholar 

  46. See (http://matter.org.uk/matscicdrom/manual/df.html) for metal atom diffusion coefficient

  47. Sodha MS, Misra S, Mishra SK (2010) Phys Plasmas 17:113705

    Article  CAS  Google Scholar 

  48. Sodha MS, Misra S, Misra SK, Srivastava S (2010) J Appl Phys 107:103307

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suresh C. Sharma.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, R., Sharma, S.C. Parametric Study of Plasma Characteristics and Carbon Nanofibers Growth in PECVD System: Numerical Modeling. Plasma Chem Plasma Process 40, 1331–1350 (2020). https://doi.org/10.1007/s11090-020-10090-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-020-10090-2

Keywords

Navigation