Skip to main content
Log in

Theoretical modeling and numerical simulation of enhanced graphene growth under the influence of oxidizers in RF-PECVD plasma using finite element method

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

This study aims to devise a computational model to understand and investigate the growth enhancement of graphene-nanosheet under various plasma environments. We methodically introduced an oxygenated environment to the conventional argon-acetylene plasma model. An oxygenated environment stimulates necessary etching phenomena to remove amorphous carbon over the catalyst during the growth process, which enhances the overall growth process. We used COMSOL simulation software to model a radio frequency-powered inductively coupled plasma enhanced chemical vapour deposition chamber operating at 30 mTorr pressure. The plasma parameters, such as electron and ion densities, along with growth parameters, such as accumulated graphene growth height and growth rates, were obtained and compared with that of the conventional argon-acetylene plasma model. The main findings of the paper are testing of the upper crest in (a) the horizontal graphene growth rates upto 1.7 × 10–5 m/s and (b) the accumulated growth height of horizontal graphene up to 58 nm (almost 1.5 times increase) over the catalyst surface, which has been shown via localized graphs. In addition, the spatial distribution of various plasma species formed in the region above the surface of the substrate and within the plasma chamber was obtained graphically and compared. The simulation results depict that by introducing minor changes in the growth environments, much better nanostructure yields can be obtained, even with the existing infrastructure. The variations in accumulated graphene growth and growth rates to change in plasma environments from the simulation hold a good constructive agreement with the existing experimental observations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: The authors confirm that the data supporting the findings of this study are available within the article itself, and are available from the corresponding author [Prof. S. C. Sharma] upon reasonable request].

References

  1. S.J. Tans, A.R.M. Verschueren, C. Dekker, Nature 393, 49–52 (1998)

    Article  ADS  Google Scholar 

  2. W.B. Choi, J.H. Kang, H.Y. Kim, Appl. Phys. Lett. 75, 3129 (1999)

    Article  ADS  Google Scholar 

  3. M.B. Nardelli, J. Bernholc, Phys. Rev. B 60, 7828 (1999)

    Article  ADS  Google Scholar 

  4. A.A. Salman, Application of nanomaterials in environmental improvement, in Nanotechnology and the Environment. (IntechOpen, 2020)

    Google Scholar 

  5. Y.Z. Bin, Q.Y. Chen, Y. Nakamura, K.T. Matsuo, Carbon 45, 1330–1339 (2007)

    Article  Google Scholar 

  6. D. Yang, L. Xia, H. Zhao, X. Hu, Y. Liu, J. Li, X. Wan, Chem. Commun. 47, 5873–5875 (2011)

    Article  Google Scholar 

  7. H.C. Foley, Microporous Mater. 4, 407–433 (2005)

    Article  Google Scholar 

  8. K.Y. Sheem, E.H. Song, Y.H. Lee, Electrochim. Acta 78, 223–228 (2012)

    Article  Google Scholar 

  9. S.C. Tsang, V. Caps, I. Paraskevas, D. Chadwick, D. Thompsett, Angew. Chem. Int. Engl. 43, 5645–5649 (2005)

    Article  Google Scholar 

  10. M. Meyyappan, L. Delzeit, A. Cassell, D. Hash, Plasma Sources Sci. Technol. 12, 205 (2003)

    Article  ADS  Google Scholar 

  11. S. Chen, Q. Jiang, Y. Chen, L. Feng, D. Wu, Nanomaterials 9, 628 (2019)

    Article  Google Scholar 

  12. U. Narula, C.M. Tan, Front. Mater. 5, 43 (2018)

    Article  ADS  Google Scholar 

  13. T. Okumura, Phys. Res. Int. 2010, 164249 (2010)

    Article  Google Scholar 

  14. M. Kumar, S. Khanna, N. Gupta, R. Gupta, S.C. Sharma, IEEE TNANO 18, 401–411 (2019)

    Google Scholar 

  15. T. Okumura, I. Nakayama, Rev. Sci. Instrum. 66(11), 5262–5265 (1995)

    Article  ADS  Google Scholar 

  16. N. Abid, A.M. Khan, S. Shujait, Adv. Coll. Interface Sci. 300, 102597 (2022)

    Article  Google Scholar 

  17. C.S. Cojocaru, A. Senger, F.L. Normand, J. Nanosci. Nanotechnol. 6, 1331 (2006)

    Article  Google Scholar 

  18. N.M. Rodriguez, J. Mater. Res. 8, 3233 (1993)

    Article  ADS  Google Scholar 

  19. D.H. Seo, S. Kumar, A.E. Rider, Z. Han, K. Ostrikov, Opt. Mat. Express 2, 700 (2012)

    Article  ADS  Google Scholar 

  20. L. Valentini, J.M. Kenny, L. Lozzi, S. Santucci, J. Appl. Phys. 92, 6188 (2002)

    Article  ADS  Google Scholar 

  21. K. Hata, D.N. Futaba, K. Mizuno, T. Namai, M. Yumura, S. Iijima, Science 306(5700), 1362 (2004)

    Article  ADS  Google Scholar 

  22. L. Song, G. Toth, R. Vajtai, M. Endo, P.M. Ajayan, Carbon 50, 5521 (2012)

    Article  Google Scholar 

  23. L. Kurzepa, A.L. Raus, J. Patmore, K. Koziol, Adv. Funct. Mater. 24, 619 (2014)

    Article  Google Scholar 

  24. C. Zhang, Y. Fu, Q. Chen, Y. Zhang, Front. Mater. Sci. China 2(1), 37 (2008)

    Article  ADS  Google Scholar 

  25. G. Zhang, D. Mann, L. Zhang, A. Javey, Y. Li, E. Yenilmez, Q. Wang, J.P. McVittie, J. Gibbons, H. Dai, Proc. Natl. Acad. Sci. U.S.A. 102(45), 16141 (2005)

    Article  ADS  Google Scholar 

  26. Y. Kim, W. Song, S.Y. Lee, S. Shrestha, C. Jeon, W.C. Choi, M. Kim, C.Y. Park, Jpn. J. Appl. Phys. Part 1 49, 085101 (2010)

    Article  Google Scholar 

  27. Y. Hao, M.S. Bharathi, L. Wang, Science 342, 720 (2013)

    Article  ADS  Google Scholar 

  28. X. Xu, Z. Zhang, L. Qiu, Nat. Nanotechnol. 11, 930–935 (2016)

    Article  ADS  Google Scholar 

  29. H. Mehdipour, K. Ostrikov, A.E. Rider, Nanotechnology 21(45), 455605 (2010)

    Article  ADS  Google Scholar 

  30. M.A. Lieberman, A.J. Lichtenberg, Principles of Plasma discharges and Material Processing (Wiley Interscience, New York, 1994)

    Google Scholar 

  31. E. Gogolides, D. Mary, A. Rhallabi, G. Turban, Jpn. J. Appl. Phys. Part 1(34), 261 (1995)

    Article  ADS  Google Scholar 

  32. J. Geddes, R.W. McCullough, A. Donnelly, H.B. Gilbody, Plasma Sources Sci. Technol. 2, 93 (1993)

    Article  ADS  Google Scholar 

  33. A.O. Brezmes, C. Breitkopf, Vacuum 116, 65–72 (2015)

    Article  ADS  Google Scholar 

  34. A.V. Vasenkov, J. Kushner, Phys. Rev. E 66, 066411 (2002)

    Article  ADS  Google Scholar 

  35. I.B. Denysenko, S. Xu, J.D. Long, P.P. Rutkevych, N.A. Azarenkov, K. Ostrikov, J. Appl. Phys. 95, 2713 (2004)

    Article  ADS  Google Scholar 

  36. Ch. Deschenaux, A. Affolter, D. Magni, Ch. Hollenstein, P. Fayet, J. Phys. D: Appl. Phys. 32, 1876 (1999)

    Article  ADS  Google Scholar 

  37. Z. Marvi, S. Xu, G. Foroutan, K. Ostrikov, Phys. Plasmas 22, 013504 (2015)

    Article  ADS  Google Scholar 

  38. C. Benndorf, P. Joeris, R. Kroger, Pure Appl. Chem. 66, 1195 (1994)

    Article  Google Scholar 

  39. I. Denysenko, N.A. Azarenkov, J. Phys. D Appl. Phys. 44(17), 31 (2011)

    Article  Google Scholar 

  40. I. Denysenko, K. Ostrikov, J. Phys. D Appl. Phys. 42, 015208 (2009)

    Article  ADS  Google Scholar 

  41. I. Denysenko, K. Ostrikov, Appl. Phys. Lett. 90, 251501 (2007)

    Article  ADS  Google Scholar 

  42. N.V. Mantzaris, E. Gogolides, A.G. Boudouvis, A. Rhallabi, G. Turban, J. Appl. Phys. 79, 3718 (1996)

    Article  ADS  Google Scholar 

  43. A. Von Keudell, W. Moller, J. Appl. Phys. 75, 7718 (1994)

    Article  ADS  Google Scholar 

  44. S. Hofmann, G. Czanyi, A.C. Ferrari, M.C. Payne, J. Robertson, Phys. Rev. Lett. 95, 036101 (2005)

    Article  ADS  Google Scholar 

  45. M. Meyyappan, J. Phys. D Appl. Phys. 42, 213001 (2009)

    Article  ADS  Google Scholar 

  46. T.G. Beuthe, J.S. Chang, Jpn. J. Appl. Phys. 38, 4576 (1991)

    Article  ADS  Google Scholar 

  47. A. Bogaerts, K. de Bleecker, V. Georgieva, I. Kolev, M. Madani, E. Neyts, Plasma Process. Polym. 3, 110–119 (2016)

    Article  Google Scholar 

  48. Y. H. Le Teuff, T. J. Millar, A. J. Marckwick, UMIST database for astrochemistry, http://www.rate99.co.uk (2001)

  49. Y. Wang, J. Chen, Y. Wang, W. Xiong, Vacuum 149, 291–296 (2018)

    Article  ADS  Google Scholar 

  50. M. Gryzinski, J. Physique Colloques 40, 171–177 (1979)

    ADS  Google Scholar 

  51. J.W.G. Wildoer, L.C. Venema, A.G. Rinzler, R.E. Smalley, C. Dekker, Nature 391, 59–62 (1998)

    Article  ADS  Google Scholar 

  52. T.M. Minea, S. Point, A. Granier, M. Touzeau, Appl. Phys. Lett. 85, 1244 (2004)

    Article  ADS  Google Scholar 

  53. S.F. Lee, Y.-P. Chang, L.-Y. Lee, J. Mater. Sci. Mater. Electron 20, 851 (2009)

    Article  Google Scholar 

  54. S.K. Srivastava, A.K. Shukla, V.D. Vankar, V. Kumar, Thin Solid Films 515, 1851 (2006)

    Article  ADS  Google Scholar 

  55. S. Wei, L.P. Ma, M.L. Chen, Z. Liu, W. Ma, D.M. Sun, H.M. Cheng, W. Ren, Carbon 148, 242–243 (2019)

    Article  Google Scholar 

  56. N. Yoshihara, H. Ago, M. Tsuji, J. Phys. Chem. C 111, 11577 (2007)

    Article  Google Scholar 

  57. S. Hussain, R. Amade, E. Bertran, Mater. Chem. Phys. 148, 914 (2014)

    Article  Google Scholar 

  58. T. Yamada, T. Namai, K. Hata, D.N. Futaba, K. Mizuno, J. Fan, M. Yudasaka, M. Yumura, S. Iijima, Nat. Nanotechnol. 1, 131 (2006)

    Article  ADS  Google Scholar 

  59. K. Xie, M. Muhler, W. Xie, Ind. Eng. Chem. Res. 52, 14081 (2013)

    Article  Google Scholar 

  60. H. Choi, M.S. Thesis. University of Massachusetts Lowell, Lowell, MA, (2008), UMI no. 1458539

  61. J. Chen, Y. Wen, Y. Guo, J. Am. Chem. Soc. 133, 44 (2011)

    Google Scholar 

  62. S. Nie, J.M. Wofford, N.C. Bartelt, O.D. Dubon, K.F. McCarty, Phys. Rev. B 84, 155425 (2011)

    Article  ADS  Google Scholar 

  63. G.H. Han, F. Gunes, J.J. Bae, Nano Lett. 11, 4144–4148 (2011)

    Article  ADS  Google Scholar 

  64. D.N. Futaba, K. Hata, T. Yamada, K. Mizuno, M. Yumura, S. Iijima, Phys. Rev. Lett. 95, 056104 (2005)

    Article  ADS  Google Scholar 

  65. X. Wang, Y. Feng, H.E. Unalan, G. Zhong, P. Li, H. Yu, A.I. Akinwande, W.I. Milne, Carbon 49, 214 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

Author Sagar Khanna acknowledges Delhi Technological University, Delhi for providing the resources for carrying out the research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suresh C. Sharma.

Ethics declarations

Conflict of interest

The authors have no competing interests to disclose.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khanna, S., Sharma, S.C. Theoretical modeling and numerical simulation of enhanced graphene growth under the influence of oxidizers in RF-PECVD plasma using finite element method. Eur. Phys. J. Plus 138, 321 (2023). https://doi.org/10.1140/epjp/s13360-023-03917-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-03917-2

Navigation