Skip to main content
Log in

The Roles of Various Plasma Active Species in Toluene Degradation by Non-thermal Plasma and Plasma Catalysis

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

Investigating the roles of plasma active species in plasma chemical reaction process can improve understanding of the mechanism of volatile organic compounds degradation by plasma. In this work, different experimental processes were designed to distinguish the contributions of various active species of plasma in the decomposition of toluene by a dielectric barrier discharge plasma with or without the CoMnOx/TiO2 catalyst. The removal efficiency of toluene, selectivity of COx (CO2 and CO), and byproducts were detected. The results showed that within the post-plasma zone, toluene could be oxidized to organic intermediates but not completely oxidized to COx by the long-lived active species of O2 plasma; furthermore, O3 alone could not degrade toluene in the gas phase, and the active species generated by N2 discharge could not degrade toluene. In the plasma area, toluene could be decomposed by both the short- and long-lived active species, and could be oxidized to COx by the short-lived active species. The introduction of CoMnOx/TiO2 catalyst, whether within or after the plasma zone, could efficiently decompose O3 and greatly improve the utilization of the active species, thus increasing the removal efficiency of toluene and the selectivity of COx.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Wu W, Zhao B, Wang S, Hao J (2017) Ozone and secondary organic aerosol formation potential from anthropogenic volatile organic compounds emissions in China. J Environ Sci China 53:224–237

    Article  Google Scholar 

  2. Niu H, Li K, Chu B, Su W, Li J (2017) Heterogeneous reactions between toluene and NO2 on mineral particles under simulated atmospheric conditions. Environ Sci Technol 51(17):9596–9604

    Article  CAS  Google Scholar 

  3. Chen HL, Lee HM, Chen SH, Chang MB, Yu SJ, Li SN (2009) Removal of volatile organic compounds by single-stage and two-stage plasma catalysis systems—a review of the performance enhancement mechanisms current status and suitable applications. Environ Sci Technol 43:2216–2227

    Article  CAS  Google Scholar 

  4. Kim H-H, Teramoto Y, Ogata A, Takagi H, Nanba T (2015) Plasma catalysis for environmental treatment and energy applications. Plasma Chem Plasma Process 36(1):45–72

    Article  Google Scholar 

  5. Xiao G, Xu W, Wu R, Ni M, Du C, Gao X, Luo Z, Cen K (2014) Non-thermal plasmas for VOCs abatement. Plasma Chem Plasma Process 34(5):1033–1065

    Article  CAS  Google Scholar 

  6. Veerapandian S, Leys C, De Geyter N, Morent R (2017) Abatement of VOCs using packed bed non-thermal plasma reactors: a review. Catalysts 7(4):113

    Article  Google Scholar 

  7. Lu M, Huang R, Wang P, Chen L, Wu J, Fu M, Wen W, Huang B, Ye D (2014) Plasma-catalytic oxidation of toluene on MnxOy at atmospheric pressure and room temperature. Plasma Chem Plasma Process 34(5):1141–1156

    Article  CAS  Google Scholar 

  8. Sivachandiran L, Thevenet F, Rousseau A (2014) Regeneration of isopropyl alcohol saturated MnxOy surface: comparison of thermal, ozonolysis and non-thermal plasma treatments. Chem Eng J 246:184–195

    Article  CAS  Google Scholar 

  9. Vandenbroucke AM, Morent R, De Geyter N, Leys C (2011) Non-thermal plasmas for non-catalytic and catalytic VOC abatement. J Hazard Mater 195:30–54

    Article  CAS  Google Scholar 

  10. Wang B, Xu X, Xu W, Wang N, Xiao H, Sun Y, Huang H, Yu L, Fu M, Wu J, Chen L, Ye D (2018) The mechanism of non-thermal plasma catalysis on volatile organic compounds removal. Catal Surv Asia 22(2):73–94

    Article  CAS  Google Scholar 

  11. Karatum O, Deshusses MA (2016) A comparative study of dilute VOCs treatment in a non-thermal plasma reactor. Chem Eng J 294:308–315

    Article  CAS  Google Scholar 

  12. Wang B, Chi C, Xu M, Wang C, Meng D (2017) Plasma-catalytic removal of toluene over CeO2–MnOx catalysts in an atmosphere dielectric barrier discharge. Chem Eng J 322:679–692

    Article  CAS  Google Scholar 

  13. Qin C, Huang X, Zhao J, Huang J, Kang Z, Dang X (2017) Removal of toluene by sequential adsorption–plasma oxidation: mixed support and catalyst deactivation. J Hazard Mater 334:29–38

    Article  CAS  Google Scholar 

  14. Yao X, Li Y, Fan Z, Zhang Z, Chen M, Shangguan W (2018) Plasma catalytic removal of hexanal over Co–Mn solid solution: effect of preparation method and synergistic reaction of ozone. Ind Eng Chem Res 57(12):4214–4224

    Article  CAS  Google Scholar 

  15. Nigar H, Julian I, Mallada R, Santamaria J (2018) Microwave-assisted catalytic combustion for the efficient continuous cleaning of VOC-containing air streams. Environ Sci Technol 52(10):5892–5901

    Article  CAS  Google Scholar 

  16. Feng X, Liu H, He C, Shen Z, Wang T (2018) Synergistic effects and mechanism of a non-thermal plasma catalysis system in volatile organic compound removal: a review. Catal Sci Technol 8(4):936–954

    Article  CAS  Google Scholar 

  17. Eliasson B, Kogelschatz U (1991) Nonequilibrium volume plasma chemical processing. IEEE Trans Plasma Sci 19(6):1063–1077

    Article  CAS  Google Scholar 

  18. Shkurenkov I, Burnette D, Lempert WR, Adamovich IV (2014) Kinetics of excited states and radicals in a nanosecond pulse discharge and afterglow in nitrogen and air. Plasma Sources Sci Technol 23(6):065003

    Article  CAS  Google Scholar 

  19. Zhu X, Gao X, Qin R, Zeng Y, Qu R, Zheng C, Tu X (2015) Plasma-catalytic removal of formaldehyde over Cu–Ce catalysts in a dielectric barrier discharge reactor. Appl Catal B: Environ 170–171:293–300

    Article  Google Scholar 

  20. Guo T, Li X, Li J, Peng Z, Xu L, Dong J, Cheng P, Zhou Z (2018) On-line quantification and human health risk assessment of organic by-products from the removal of toluene in air using non-thermal plasma. Chemosphere 194:139–146

    Article  CAS  Google Scholar 

  21. Song H, Hu F, Peng Y, Li K, Bai S, Li J (2018) Non-thermal plasma catalysis for chlorobenzene removal over CoMn/TiO2 and CeMn/TiO2: synergistic effect of chemical catalysis and dielectric constant. Chem Eng J 347:447–454

    Article  CAS  Google Scholar 

  22. Wang WZ, Kim HH, Van Laer K, Bogaerts A (2018) Streamer propagation in a packed bed plasma reactor for plasma catalysis applications. Chem Eng J 334:2467–2479

    Article  CAS  Google Scholar 

  23. Whitehead JC (2016) Plasma-catalysis: the known knowns, the known unknowns and the unknown unknowns. J Phys D Appl Phys 49(24):243001

    Article  Google Scholar 

  24. Fan X, Zhu T, Sun Y, Yan X (2011) The roles of various plasma species in the plasma and plasma-catalytic removal of low-concentration formaldehyde in air. J Hazard Mater 196:380–385

    Article  CAS  Google Scholar 

  25. Chen HL, Lee HM, Chen SH, Chang MB (2008) Review of packed-bed plasma reactor for ozone generation and air pollution control. Ind Eng Chem Res 47(7):2122–2130

    Article  CAS  Google Scholar 

  26. Mao L, Chen Z, Wu X, Tang X, Yao S, Zhang X, Jiang B, Han J, Wu Z, Lu H, Nozaki T (2018) Plasma-catalyst hybrid reactor with CeO2/gamma-Al2O3 for benzene decomposition with synergetic effect and nano particle by-product reduction. J Hazard Mater 347:150–159

    Article  CAS  Google Scholar 

  27. Li Y, Fan Z, Shi J, Liu Z, Zhou J, Shangguan W (2015) Modified manganese oxide octahedral molecular sieves M′-OMS-2 (M′ = Co, Ce, Cu) as catalysts in post plasma-catalysis for acetaldehyde degradation. Catal Today 256:178–185

    Article  CAS  Google Scholar 

  28. Dinh MTN, Giraudon JM, Vandenbroucke AM, Morent R, De Geyter N, Lamonier JF (2015) Post plasma-catalysis for total oxidation of trichloroethylene over Ce–Mn based oxides synthesized by a modified “redox-precipitation route”. Appl Catal B: Environ 172–173:65–72

    Article  Google Scholar 

  29. Harling AM, Glover DJ, Whitehead JC, Zhang K (2009) The role of ozone in the plasma-catalytic destruction of environmental pollutants. Appl Catal B: Environ 90(1–2):157–161

    Article  CAS  Google Scholar 

  30. Ye Z, Giraudon J-M, De Geyter N, Morent R, Lamonier J-F (2018) The design of MnOx based catalyst in post-plasma catalysis configuration for toluene abatement. Catalysts 8(2):91

    Article  Google Scholar 

  31. Hosseini MS, Asilian Mahabadi H, Yarahmadi R (2019) Removal of toluene from air using a cycled storage-discharge (CSD) plasma catalytic process. Plasma Chem Plasma Process 39(1):125–142

    Article  CAS  Google Scholar 

  32. Eliasson B, Hirth M, Kogelschatz U (1987) Ozone synthesis from oxygen in dielectric barrier discharges. J Phys D Appl Phys 20:1421–1437

    Article  CAS  Google Scholar 

  33. NIST (2015) Chemical kinetics database. Standard reference database 17, version 7.0 (web version), release 1.6.8

  34. Kim H-H, Sugasawa M, Hirata H, Teramoto Y, Kosuge K, Negishi N, Ogata A (2013) Ozone-assisted catalysis of toluene with layered ZSM-5 and Ag/ZSM-5 zeolites. Plasma Chem Plasma Process 33(6):1083–1098

    Article  CAS  Google Scholar 

  35. Young RA, Black G (1967) Deactivation of O(1D). J Chem Phys 47(7):2311–2318

    Article  CAS  Google Scholar 

  36. Franklin RN (2001) The role of O2 (a1Δg) metastables and associative detachment in discharges in oxygen. J Phys D Appl Phys 34(12):1834–1839

    Article  CAS  Google Scholar 

  37. Xie W, Li L, Zhou B, Cai W (2008) Emission spectroscopy and energy transfer process in atmospheric dielectric barrier discharge in oxygen. Acta Phys-Chim Sin 24(5):827–832

    CAS  Google Scholar 

  38. Kuniko Urashima J-SC (2000) Removal of volatile organic compounds from air streams and industrial flue gases by non-thermal plasma technology. IEEE Trans Dielectr Electr Insul 7(5):602–613

    Article  Google Scholar 

  39. Roland U, Holzer F, Kopinke FD (2005) Combination of non-thermal plasma and heterogeneous catalysis for oxidation of volatile organic compounds. Appl Catal B: Environ 58(3–4):217–226

    Article  CAS  Google Scholar 

  40. Patil BS, Cherkasov N, Lang J, Ibhadon AO, Hessel V, Wang Q (2016) Low temperature plasma-catalytic NOx synthesis in a packed DBD reactor: effect of support materials and supported active metal oxides. Appl Catal B: Environ 194:123–133

    Article  CAS  Google Scholar 

  41. Donohoe KG, Shair FH, Wulf OR (1977) Production of O3, NO, and N2O in a pulsed discharge at 1Atm. Ind Eng Chem Fundam 16(2):208–215

    Article  CAS  Google Scholar 

  42. Wallis AE, Whitehead JC, Zhang K (2007) Plasma-assisted catalysis for the destruction of CFC-12 in atmospheric pressure gas streams using TiO2. Catal Lett 113(1–2):29–33

    Article  CAS  Google Scholar 

  43. Van Laer K, Bogaerts A (2017) How bead size and dielectric constant affect the plasma behaviour in a packed bed plasma reactor: a modelling study. Plasma Sources Sci Technol 26(8):085007

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the national key research and development program of China (2016YFC0209203 and 2016YFE0126600).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yue Peng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, H., Peng, Y., Liu, S. et al. The Roles of Various Plasma Active Species in Toluene Degradation by Non-thermal Plasma and Plasma Catalysis. Plasma Chem Plasma Process 39, 1469–1482 (2019). https://doi.org/10.1007/s11090-019-10013-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-019-10013-w

Keywords

Navigation