Skip to main content
Log in

Ozone-Assisted Catalysis of Toluene with Layered ZSM-5 and Ag/ZSM-5 Zeolites

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

This paper presents a new type of ozone-assisted catalysis for toluene decomposition. The different catalytic activities of ZSM-5 and Ag/ZSM-5 were incorporated into a layered catalyst with a tandem configuration. Instead of increasing the amount of metal catalyst, the layered catalyst was formed, which had an equal amount of bare ZSM-5 and Ag/ZSM-5 and could achieve both high toluene conversion and CO2 selectivity concurrently. The properties of each catalyst were evaluated with respect to toluene conversion, formation of intermediates, CO2 selectivity and ozone demand factor. The bare ZSM-5 exhibited higher toluene conversion than the Ag/ZSM-5, while its activity toward deep oxidation was limited. However, the Ag/ZSM-5 was found to be effective for the deep oxidation of reaction intermediates (HCOOH and CO). Separate oxidation tests with HCOOH and CO revealed that the ZSM-5-supported Ag nanoparticles could oxidize the HCOOH and CO in the absence of ozone, which was not possible with the bare ZSM-5. Plausible pathways for the oxidation of toluene with O3 over ZSM-5 and Ag/ZSM-5 were proposed based on the experimental evidence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Everaert K, Baeyens J (2004) J Hazard Mater B109:113–139

    Article  Google Scholar 

  2. Spivey JJ (1987) Ind Eng Chem Res 26:2165–2180

    Article  CAS  Google Scholar 

  3. Cooper CD, Alley FC (2002) Air pollution control: a design approach, 3rd edn. Waveland Press Inc, Long Grove, pp 321–458

    Google Scholar 

  4. Zhao X, Yin M, Ma L, Liang L, Liu C, Liao J, Lu T, Xing W (2011) Energy Environ Sci 4:2525–2529

    Article  Google Scholar 

  5. Li X, Wang L, Xia Q, Liu Z, Li Z (2011) Catal Commun 14:15–19

    Article  CAS  Google Scholar 

  6. Nanba T, Masukawa S, Uchisawa J, Obuchi A (2008) J Catal 259:250–259

    Article  CAS  Google Scholar 

  7. Chen HL, Lee HM, Chen SH, Chang MB, Yu SJ, Li SN (2009) Environ Sci Technol 43:2216–2227

    Article  CAS  Google Scholar 

  8. Vandenbroucke AM, Morent R, Geyter ND, Leys C (2011) J Hazard Mater 195:30–54

    Article  CAS  Google Scholar 

  9. Kim HH, Ogata A (2011) Eur Phys J Appl Phys 55:13806

    Article  Google Scholar 

  10. Kim HH, Takashima K, Katsura S, Mizuno A (2001) J Phys D Appl Phys 34:604–613

    Article  CAS  Google Scholar 

  11. Holzer F, Roland U, Kopinke F-D (2002) Appl Catal B: Environ 38:163–181

    Article  CAS  Google Scholar 

  12. Dimitrova S, Ivanov G, Mehandjiev D (2004) Appl Catal A: Gen 266:81–87

    Article  CAS  Google Scholar 

  13. Konova P, Stoyanova M, Naydenov A, Christoskova S, Mehandjiev D (2006) Appl Catal A: Gen 298:109–114

    Article  CAS  Google Scholar 

  14. Gervasini A, Vezzoli G, Ragaini V (1996) Catal Today 29:449–455

    Article  CAS  Google Scholar 

  15. Yamamoto T (1999) J Hazard Mater B67:165–181

    Article  Google Scholar 

  16. Futamura S, Zhang Z, Yamamoto T (1999) IEEE Trans Ind Appl 35(4):760–766

    Article  Google Scholar 

  17. Marotta E, Paradisi C (2005) J Mass Spectrom 40:1583–1589

    Article  CAS  Google Scholar 

  18. Ono R, Nakagawa Y, Oda T (2011) J Phys D Appl Phys 44:485201

    Article  Google Scholar 

  19. Guaitella O, Gatilova L, Rousseau A (2005) Appl Phys Lett 86:151502

    Article  Google Scholar 

  20. Blin-Simiand N, Pasquiers S, Jorand F, Postel C, Vacher JR (2009) J Phys D Appl Phys 42:122003

    Article  Google Scholar 

  21. Ono R, Tobaru C, Teramoto Y, Oda T (2009) Plasma Sour Sci Technol 18(2):025006

    Article  Google Scholar 

  22. Kim HH, Hwang N, Ogata A, Song YH (2011) IEEE Trans Plasma Sci 39(11):2220–2221

    Article  CAS  Google Scholar 

  23. Kim HH, Kim JH, Ogata A (2009) J Phys D Appl Phys 42:135210

    Article  Google Scholar 

  24. Ogata A, Yamanouchi K, Mizuno K, Kushiyama S, Yamamoto T (1999) IEEE Trans Ind Appl 35(6):1289–1295

    Article  CAS  Google Scholar 

  25. Ogata A, Ito D, Mizuno K, Kushiyama S, Yamamoto T (2001) IEEE Trans Ind Appl 37(4):959–964

    Article  CAS  Google Scholar 

  26. Holzer F, Kopinke FD, Roland U (2005) Plasma Chem Plasma Proc 25(6):595–611

    Article  CAS  Google Scholar 

  27. Harling A, Glover DJ, Whitehead JC, Zhang K (2009) Appl Catal B: Environ 90:157–161

    Article  CAS  Google Scholar 

  28. Sekiguchi K, Sanada A, Sakamoto K (2003) Catal Commun 4:247–252

    Article  CAS  Google Scholar 

  29. Einaga H, Futamura S (2006) J Catal 243:446–450

    Article  CAS  Google Scholar 

  30. Zhao DZ, Shi C, Li XS, Zhu AM, Jang BWL (2012) J Hazard Mater 239:362–369

    Article  Google Scholar 

  31. Rezaei E, Soltan J (2012) Chem Eng J 198–199:482–490

    Article  Google Scholar 

  32. Xi Y, Reed C, Lee YK, Oyama ST (2005) J Phys Chem B 109:17587–17595

    Article  CAS  Google Scholar 

  33. Long L, Zhao J, Yang L, Fu M, Wu J, Huang B, Ye D (2011) Chin. J Catal 32:904–916

    CAS  Google Scholar 

  34. Almquist CB, Sahle-Demessie E, Sehker SC, Sowash J (2007) Environ Sci Technol 41(13):4754–4760

    Article  CAS  Google Scholar 

  35. Kastner JR, Buquoi Q, Ganagavaram R, Das KC (2005) Environ Sci Technol 39:1835–1842

    Article  CAS  Google Scholar 

  36. Ogata A, Saito K, Kim HH, Sugasawa M, Aritani H, Einaga H (2010) Plasma Chem Plasma Proc 30:33–42

    Article  CAS  Google Scholar 

  37. Gervasini A, Ragaini V (2000) Catal Today 60:129–138

    Article  CAS  Google Scholar 

  38. Kwong CW, Chao CYH, Hui KS, Wan MP (2008) Environ Sci Technol 42(22):8504–8509

    Article  CAS  Google Scholar 

  39. Kwong CW, Chao CYH, Hui KS, Wan MP (2008) Atmospheric Environ 42:2300–2311

    Article  CAS  Google Scholar 

  40. Sugasawa M, Ogata A (2011) Ozone Sci Eng 33:158–163

    Article  CAS  Google Scholar 

  41. Einaga H, Futamura S (2004) J Catal 227:304–312

    Article  CAS  Google Scholar 

  42. Einaga H, Futamura S (2004) React Kinet Catal Lett 81(1):121–128

    Article  CAS  Google Scholar 

  43. Kim HH, Ogata A, Futamura S (2006) IEEE Trans Plasma Sci 34(3):984–995

    Article  CAS  Google Scholar 

  44. Li W, Gibbs GV, Oyama ST (1998) J Am Chem Soc 120:9041–9046

    Article  CAS  Google Scholar 

  45. Li W, Oyama ST (1998) J Am Chem Soc 120:9047–9052

    Article  CAS  Google Scholar 

  46. Reed C, Xi Y, Oyama ST (2005) J Catal 235:378–392

    Article  CAS  Google Scholar 

  47. Burghaus U, Conrad H (1996) Surf Sci 352:253–257

    Article  Google Scholar 

  48. Kang Y, Sun M, Li A (2012) Catal Lett 142:1498–1504

    Article  CAS  Google Scholar 

  49. Biabani-Ravandi A, Rezaei M, Fattah Z (2013) Chem Eng J 219:124–130

    Article  CAS  Google Scholar 

  50. Chao CYH, Kwong CW, Hui KS (2007) J Hazard Mater 143:118–127

    Article  CAS  Google Scholar 

  51. Ray AB, Anderegg FO (1921) J Am Chem Soc 43(5):967–978

    Article  CAS  Google Scholar 

  52. Einaga H, Ogata A (2010) Environ Sci Technol 44(7):2612–2617

    Article  CAS  Google Scholar 

  53. Imamura S, Ikebata M, Ito T, Ogita T (1991) Ind Eng Chem Res 30:217–221

    Article  CAS  Google Scholar 

  54. Dhandapani B, Oyama ST (1997) Appl Catal B: Environ 11:129–166

    Article  CAS  Google Scholar 

  55. Biener J, Wittstock A, Zepeda-Ruiz LA, Biener MM, Zielasek V, Kramer D, Viswanath RN, Weissmüller J, Bäumer M, Hamza AV (2009) Nat Mater 8:47–51

    Article  CAS  Google Scholar 

  56. Kumar N, Konova PM, Naydenov A, Heikillä T (2004) Catal Lett 98(1):57–60

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the Environmental Technology Development Fund (S2-01) from the Ministry of the Environment, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyun-Ha Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, HH., Sugasawa, M., Hirata, H. et al. Ozone-Assisted Catalysis of Toluene with Layered ZSM-5 and Ag/ZSM-5 Zeolites. Plasma Chem Plasma Process 33, 1083–1098 (2013). https://doi.org/10.1007/s11090-013-9487-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-013-9487-z

Keywords

Navigation