Skip to main content

Advertisement

Log in

Emission Spectrometric Evaluation of a Hollow-Cathode Glow Discharge Plasma with Helium–Oxygen Mixed Gas for Surface Modification of Co–Cr–Mo Alloy

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

This paper represents emission spectrometric analysis of a hollow-cathode glow discharge plasma with helium–oxygen mixed gas for surface treatment of a cobalt-based alloy, together with surface analysis of the resulting oxide layer. A Co–28Cr–6Mo alloy was employed as a specimen. The objective of this work is to obtain plasma information for the operating conditions to be optimized for producing a stoichiometric oxide layer on the alloy surface. Helium atomic lines, atomic and ionic lines of oxygen atom, and band heads of oxygen molecule ion were observed in the emission spectra. These intensities drastically changed depending on a mixing ratio of helium–oxygen mixed gas; particularly, the emission intensity of the molecular bands was largely enhanced in the mixed gas plasma compared to the pure oxygen plasma. This band spectrum is assigned to an electronic transition from the 4 Σ g to 4 Π u states of oxygen molecule ion, whose excitation energies are 18–19 eV from the ground state of oxygen molecule. It is thus suggested that a Penning-type ionization process with metastables of helium atom (1s2s 1 S 0, 20.6 eV and 3 S 1, 19.8 eV) is an excitation mechanism how the number density of the corresponding excited state can be elevated in the helium–oxygen mixed gas plasma. This effect, which more populated the excited oxygen species in the plasma, also exerted influence on the resultant oxide layer, such as the chemical composition and the layer thickness. Surface analysis by X-ray photoelectron spectroscopy indicated that an oxide layer consisting of iron and chromium oxides was formed by this plasma treatment, and that chromium atom was enriched in it. The thickness of the oxide layer varied with a mixing ratio of the plasma gas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Steinemann SG (1980) Evaluation of biomaterials. Wiley, New York

    Google Scholar 

  2. Long M, Rack HJ (1998) Biomaterials 19:1621–1639

    Article  CAS  Google Scholar 

  3. Akahori T, Niinomi M (1998) Mater Sci Eng A 243:237–243

    Article  Google Scholar 

  4. Denkhaus E, Salnikow K (2002) Crit Rev Oncol/Hematol 42:35–56

    Article  CAS  Google Scholar 

  5. Yamanaka K, Mori M, Chiba A (2016) Acta Biomater 31:435–447

    Article  CAS  Google Scholar 

  6. Mori M, Yamanaka K, Kuramoto K, Ohmura K, Ashino T, Chiba A (2015) Mater Sci Eng C 55:145–154

    Article  CAS  Google Scholar 

  7. Ng BS, Annergren I, Soutar AM, Khor KA, Jarfors AEW (2005) Biomaterials 26:1087–1095

    Article  CAS  Google Scholar 

  8. Zaffe D, Bertoldi C, Consolo U (2004) Biomaterials 25:3837–3844

    Article  CAS  Google Scholar 

  9. Satoh K, Ohtsu N, Sato S, Wagatsuma K (2013) Surf Coat Technol 232:298–302

    Article  CAS  Google Scholar 

  10. Satoh K, Sato S, Wagatsuma K (2016) Surf Coat Technol 302:82–87

    Article  CAS  Google Scholar 

  11. Broekaert JA (2002) Analytical atomic spectrometry with flames and plasmas. Wiley-VCH Verlag, Weinheim

    Google Scholar 

  12. Wagatsuma K, Hirokawa K (1987) Spectrochim Acta 42B:523–531

    Article  CAS  Google Scholar 

  13. Wagatsuma K, Hirokawa K (1988) Anal Chem 60:702–705

    Article  CAS  Google Scholar 

  14. Wagatsuma K (2001) Spectrochim Acta 56B:465–486

    Article  CAS  Google Scholar 

  15. Wagatsuma K, Hirokawa K (1995) Anal Chim Acta 806:193–200

    Article  Google Scholar 

  16. Mushtaq S, Steers EBM, Pickering JC, Gusarova T, Sm P, Weinstein V (2011) J Anal At Spectrom 26:766–775

    Article  CAS  Google Scholar 

  17. Mushtaq S, Steers EBM, Pickering JC, Weinstein V (2014) J Anal At Spectrom 29:2027–2041

    Article  CAS  Google Scholar 

  18. Zaidel AN, Prokofev VK, Raikill SM (1961) Tables of spectrum lines. Pergamon Press, Berlin

    Google Scholar 

  19. Moore CE (1949, 1953) Atomic energy levels, vols 1 and 2. NBS Circular No. 467, U.S. Government Printing Office, Washington

  20. Pearse RWB, Gaydon AG (1965) The identification of molecular spectra, 3rd edn. Chapman & Hall, London

    Google Scholar 

  21. Seah MP (2001) Surf Interface Anal 31:721–723

    Article  CAS  Google Scholar 

  22. Shirley DA (1972) Phys Rev B 5:4709–4714

    Article  Google Scholar 

  23. Proctor A, Sherwood PMA (1982) Anal Chem 54:13–19

    Article  CAS  Google Scholar 

  24. Krupenie PH (1972) J Phys Chem Ref Data 1:423–534

    Article  CAS  Google Scholar 

  25. von Engel A (1965) Ionized gases. Clarendon Press, Oxford

    Google Scholar 

  26. Zhang L, Kashiwakura S, Wagatsuma K (2011) Spectrochim Acta Part B 66:785–792

    Article  CAS  Google Scholar 

  27. Bell KL, Kennedy DJ, Kingston AE (1968) J Phys B 1:218–231

    Article  Google Scholar 

  28. Herzberg G (1950) Molecular spectra and molecular structure. I. Spectra of diatomic molecules. Van Nostrand Reinhold, New York

    Google Scholar 

  29. Briggs D, Seah MP (1983) Practical surface analysis by Auger and X-ray photoelectron spectroscopy. Wiley, Chichester

    Google Scholar 

  30. Hess DW (1984) J Vac Sci Technol A 2:244–252

    Article  CAS  Google Scholar 

  31. Szymanowski H, Sobczyk A, Gazicki-Lipman M, Jakubowski W, Klimek L (2005) Surf Coat Technol 200:1036–1040

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Drs. M. Mori and A. Chiba, IMR Tohoku University, Japan, for a gift of the Co–Cr–Mo alloy sample. This work was supported by the Grant-in-Aid for Japan Society for the Promotion of Science Fellowships (No. 267212).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuaki Wagatsuma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shimazaki, K., Satoh, K. & Wagatsuma, K. Emission Spectrometric Evaluation of a Hollow-Cathode Glow Discharge Plasma with Helium–Oxygen Mixed Gas for Surface Modification of Co–Cr–Mo Alloy. Plasma Chem Plasma Process 37, 1265–1279 (2017). https://doi.org/10.1007/s11090-017-9801-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-017-9801-2

Keywords

Navigation