Skip to main content
Log in

Correlation Between Plasma Electrolytic Oxidation Coating on Ti6Al4V Alloy and Cathode Current

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Plasma electrolytic oxidation (PEO) is a common surface treatment method to improve the properties of titanium alloys. Here, the structure, composition and corrosion resistance of the PEO coating treated in silicate electrolyte was investigated to uncover the effect of cathode current on PEO and how softening sparks work using bipolar mode (soft sparking mode), scanning electron microscope, X-ray energy dispersive spectrometer, transmission electron microscope, X-ray diffraction and potentiodynamic polarization test. The results show that the cathode current can reduce the spark intensity, promote the spark to migrate to the inner coating, resulting in a dense and thick inner layer. Besides, the cathode current can promote the type-A discharge, thus forming bubble-like oxide protrusions and bowl-like pits on the coating surface. The formation of TiO2 is inhibited with the cathode current increasing, so the thickness of the coating and the amorphous layer at the coating/substrate interface decreases. The spark causes SiO32− to form amorphous SiO2 which deposits around the pores. The existence of filamentous discharge in the inner layer was confirmed by observing SiO2 deposition location. After spark softening, coating growth is achieved by forming amorphous TiO2, but softening sparks can promote the transformation of amorphous TiO2 into rutile and anatase around them. The increasing cathode current increases the amount of electrolyte ions deposited in the outer layer, which provides a new method for functional coating prepared by using particle deposition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. L. Wang, W. Fu, G. Yi, Z. Chen, Z. Gao, and Q. Pan: Membranes, 2022, vol. 12, p. 516. https://doi.org/10.3390/membranes12050516.

    Article  CAS  Google Scholar 

  2. V. Grebnevs, K. Lesniak-Ziolkowska, M. Wala, M. Dulski, S. Altundal, A. Dutovs, L. Avotina, D. Erts, R. Viter, A. Viksna, and W. Simka: Appl. Surf. Sci., 2022, vol. 598, 153793. https://doi.org/10.1016/j.apsusc.2022.153793.

    Article  CAS  Google Scholar 

  3. M. Adigamova, I. Lukiyanchuk, I. Tkachenko, and V. Morozova: Mater. Chem. Phys., 2022, vol. 275, 125231https://doi.org/10.1016/j.matchemphys.2021.125231.

    Article  CAS  Google Scholar 

  4. C. Yang, S. Cui, Z. Wu, J. Zhu, J. Huang, Z. Ma, R. Fu, X. Tian, P. Chu, and Z. Wu: Tribol. Int., 2021, vol. 160, 107018. https://doi.org/10.1016/j.triboint.2021.107018.

    Article  CAS  Google Scholar 

  5. X. Zhang, G. Cai, Y. Lv, Y. Wu, and Z. Dong: Surf. Coat. Technol., 2020, vol. 400, 126202. https://doi.org/10.1016/j.surfcoat.2020.126202.

    Article  CAS  Google Scholar 

  6. T. Narayanan, J. Kim, and H. Park: Appl. Surf. Sci., 2020, vol. 504, 144388. https://doi.org/10.1016/j.apsusc.2019.144388.

    Article  CAS  Google Scholar 

  7. M. Becerikli, A. Kopp, N. Kroger, M. Bodrova, C. Wallner, J. Wagner, M. Dadras, B. Jettkant, F. Pohl, M. Lehnhardt, O. Jung, and B. Behr: Mater. Sci. Eng. C-Mater. Biol. Appl., 2021, vol. 123, 112030. https://doi.org/10.1016/j.msec.2021.112030.

    Article  CAS  Google Scholar 

  8. D. Mashtalyar, K. Nadaraia, I. Imshinetskiy, E. Belov, V. Filonina, S. Suchkov, S. Sinebryukhov, and S. Gnedenkov: Appl. Surf. Sci., 2021, vol. 536, 147976. https://doi.org/10.1016/j.apsusc.2020.147976.

    Article  CAS  Google Scholar 

  9. M. Martinez-Viademonte, S. Abrahami, T. Hack, M. Burchardt, and H. Terryn: Coatings, 2020, vol. 10, p. 1106. https://doi.org/10.3390/coatings10111106.

    Article  CAS  Google Scholar 

  10. D. Zhai, K. Feng, and H. Yue: Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 2019, vol. 50A, pp. 2507–18. https://doi.org/10.1007/s11661-019-05185-1.

    Article  CAS  Google Scholar 

  11. M. Molaei, M. Nouri, K. Babaei, and A. Fattah-Alhosseini: Surf. Interfaces, 2021, vol. 22, 100888. https://doi.org/10.1016/j.surfin.2020.100888.

    Article  CAS  Google Scholar 

  12. A. Bu, Y. Zhang, Y. Xiang, W. Chen, H. Cheng, and L. Wang: J. Mater. Sci. Mater. Electron., 2020, vol. 31, pp. 17067–74. https://doi.org/10.1007/s10854-020-04264-z.

    Article  CAS  Google Scholar 

  13. M. Nadimi and C. Dehghanian: Ceram. Int., 2021, vol. 47, pp. 33413–25. https://doi.org/10.1016/j.ceramint.2021.08.248.

    Article  CAS  Google Scholar 

  14. N. Ao, D. Liu, X. Zhang, and G. He: J. Alloys Compd., 2020, vol. 823, 153823. https://doi.org/10.1016/j.jallcom.2020.153823.

    Article  CAS  Google Scholar 

  15. A. Bordbar-Khiabani, S. Ebrahimi, and B. Yarmand: Corros. Sci., 2020, vol. 173, 108781. https://doi.org/10.1016/j.corsci.2020.108781.

    Article  CAS  Google Scholar 

  16. D.S. Tsai and C.C. Chou: Metals, 2018, vol. 8, p. 105. https://doi.org/10.3390/met8020105.

    Article  CAS  Google Scholar 

  17. D.S. Tsai, G.W. Chen, and C.C. Chou: Surf. Coat. Technol., 2019, vol. 357, pp. 235–43. https://doi.org/10.1016/j.surfcoat.2018.09.080.

    Article  CAS  Google Scholar 

  18. M. Shao, W. Wang, H. Yang, X. Zhang, and X. He: Coatings, 2021, vol. 11, p. 1288. https://doi.org/10.3390/coatings11111288.

    Article  CAS  Google Scholar 

  19. A.B. Rogov, A. Yerokhin, and A. Matthews: Langmuir, 2017, vol. 33, pp. 11059–69. https://doi.org/10.1021/acs.langmuir.7b02284.

    Article  CAS  Google Scholar 

  20. R. Hussein, P. Zhang, X. Nie, Y. Xia, and D. Northwood: Surf. Coat. Technol., 2011, vol. 206, pp. 1990–97. https://doi.org/10.1016/j.surfcoat.2011.08.060.

    Article  CAS  Google Scholar 

  21. M. Rahmati, K. Raeissi, M. Toroghinejad, A. Hakimizad, and M. Santamaria: Coatings, 2019, vol. 9, p. 688. https://doi.org/10.3390/coatings9100688.

    Article  CAS  Google Scholar 

  22. Z. Yao, Y. Jiang, F. Jia, Z. Jiang, and F. Wang: Appl. Surf. Sci., 2008, vol. 254, pp. 4084–91. https://doi.org/10.1016/j.apsusc.2007.12.062.

    Article  CAS  Google Scholar 

  23. Z. Yao, Y. Liu, Y. Xu, Z. Jiang, and F. Wang: Mater. Chem. Phys., 2011, vol. 126, pp. 227–31. https://doi.org/10.1016/j.matchemphys.2010.11.035.

    Article  CAS  Google Scholar 

  24. R.O. Hussein, X. Nie, and D.O. Northwood: Mater. Chem. Phys., 2012, vol. 134, pp. 484–92. https://doi.org/10.1016/j.matchemphys.2012.03.020.

    Article  CAS  Google Scholar 

  25. S. Aliasghari, P. Skeldon, and G.E. Thompson: Appl. Surf. Sci., 2014, vol. 316, pp. 463–76. https://doi.org/10.1016/j.apsusc.2014.08.037.

    Article  CAS  Google Scholar 

  26. W. Gebarowski and S. Pietrzyk: Arch. Metall. Mater., 2014, vol. 59, pp. 407–11. https://doi.org/10.2478/amm-2014-0070.

    Article  CAS  Google Scholar 

  27. M. Laveissiere, H. Cerda, J. Roche, L. Cassayre, and L. Arurault: Surf. Coat. Technol., 2019, vol. 361, pp. 50–62. https://doi.org/10.1016/j.surfcoat.2018.12.122.

    Article  CAS  Google Scholar 

  28. J. Han, Y. Cheng, W. Tu, T. Zhan, and Y. Cheng: Appl. Surf. Sci., 2018, vol. 428, pp. 684–97. https://doi.org/10.1016/j.apsusc.2017.09.109.

    Article  CAS  Google Scholar 

  29. W. Cui, L. Jin, and L. Zhou: Mater. Sci. Eng. C Mater. Biol. Appl., 2013, vol. 33, pp. 3775–79. https://doi.org/10.1016/j.msec.2013.05.011.

    Article  CAS  Google Scholar 

  30. T. Teh, A. Berkani, S. Mato, P. Skeldon, G.E. Thompson, H. Habazaki, and K. Shimizu: Corros. Sci., 2003, vol. 45, pp. 2757–68. https://doi.org/10.1016/S0010-938X(03)00101-X.

    Article  CAS  Google Scholar 

  31. A. Hakimizad, K. Raeissi, M. Santamaria, and M. Asghari: Electrochim. Acta, 2018, vol. 284, pp. 618–29. https://doi.org/10.1016/j.electacta.2018.07.200.

    Article  CAS  Google Scholar 

  32. R. Hussein, X. Nie, D. Northwood, A. Yerokhin, and A. Matthews: J. Phys. D-Appl. Phys., 2010, vol. 43, 105203. https://doi.org/10.1088/0022-3727/43/10/105203.

    Article  CAS  Google Scholar 

  33. Q. Li, W. Yang, C. Liu, D. Wang, and J. Liang: Surf. Coat. Technol., 2017, vol. 316, pp. 162–70. https://doi.org/10.1016/j.surfcoat.2017.03.021.

    Article  CAS  Google Scholar 

  34. H.B. Wang, D. Zhai, and K. Feng: Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 2021, vol. 52, pp. 4691–702. https://doi.org/10.1007/s11661-021-06421-3.

    Article  CAS  Google Scholar 

  35. S. Tsunekawa, Y. Aoki, and H. Habazaki: Surf. Coat. Technol., 2011, vol. 205, pp. 4732–40. https://doi.org/10.1016/j.surfcoat.2011.04.060.

    Article  CAS  Google Scholar 

  36. A. Lugovskoy and S. Lugovskoy: Mater. Sci. Eng. C Mater., 2014, vol. 43, pp. 527–32. https://doi.org/10.1016/j.msec.2014.07.030.

    Article  CAS  Google Scholar 

  37. E. Poorqasemi, O. Abootalebi, M. Peikari, and F. Haqdar: Corros. Sci., 2009, vol. 51, pp. 1043–54. https://doi.org/10.1016/j.corsci.2009.03.001.

    Article  CAS  Google Scholar 

  38. M. Chiku, W. Tsujiwaki, E. Higuchi, and H. Inoue: J. Power Sources, 2013, vol. 244, pp. 675–78. https://doi.org/10.1016/j.jpowsour.2012.12.047.

    Article  CAS  Google Scholar 

  39. J. Bockris: J. Chem. Phys., 1956, vol. 24, pp. 817–27. https://doi.org/10.1063/1.1742616.

    Article  CAS  Google Scholar 

  40. X. Wang, S. Hu, W. Li, and Y. Hu: Constr. Build. Mater., 2022, vol. 337, 127572. https://doi.org/10.1016/j.conbuildmat.2022.127572.

    Article  CAS  Google Scholar 

  41. Q. Tang, T. Qiu, P. Ni, D. Zhai, and J. Shen: Coatings, 2022, vol. 12, p. 1191. https://doi.org/10.3390/coatings12081191.

    Article  CAS  Google Scholar 

  42. H. Chen, J. Shen, J. Deng, Y. Hu, and Y. Zhang: Appl. Surf. Sci., 2020, vol. 508, 145285. https://doi.org/10.1016/j.apsusc.2020.145285.

    Article  CAS  Google Scholar 

  43. A. Pergament, A. Velichko, V. Putrolaynen, G. Stefanovich, N. Kuldin, A. Cheremisin, I. Feklistov, and N. Khomlyuk: J. Phys. D Appl. Phys., 2008, vol. 41, p. 225306. https://doi.org/10.1088/0022-3727/41/22/225306.

    Article  CAS  Google Scholar 

  44. R.S. Alwitt: J. Electrochem. Soc., 1987, vol. 134, pp. 1891–96. https://doi.org/10.1149/1.2100784.Author.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research is funded by China Postdoctoral Science Foundation (Grant No.2021M700569), Chongqing Postdoctoral Science Foundation (Grant No. cstc2021jcyj-bsh0133), and 2022 Jiangsu Provincial Science and technology plan special fund BE2022110 (key research and development plan, industry prospect and key core technology).

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Author Contributions

TQ: Writing, analyzing, investigation and drawing. LT: Editing, investigation and formal analysis. DZ: Experiment and theoretical analysis. PN: Formal analysis, Investigation, Data Curation. JS: Editing and writing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Shen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiu, T., Tan, L., Zhai, D. et al. Correlation Between Plasma Electrolytic Oxidation Coating on Ti6Al4V Alloy and Cathode Current. Metall Mater Trans A 54, 333–345 (2023). https://doi.org/10.1007/s11661-022-06883-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-022-06883-z

Navigation